On the Motion of Harmonically Excited Spring Pendulum in Elliptic Path Near Resonances
The response of a nonlinear multidegrees of freedom (M-DOF) for a nature dynamical system represented by a spring pendulum which moves in an elliptic path is investigated. Lagrange’s equations are used in order to derive the governing equations of motion. One of the important perturbation techniques...
Main Authors: | T. S. Amer, M. A. Bek, I. S. Hamada |
---|---|
格式: | 文件 |
语言: | English |
出版: |
Wiley
2016-01-01
|
丛编: | Advances in Mathematical Physics |
在线阅读: | http://dx.doi.org/10.1155/2016/8734360 |
相似书籍
-
The dynamical analysis for the motion of a harmonically two degrees of freedom damped spring pendulum in an elliptic trajectory
由: T.S. Amer, et al.
出版: (2022-02-01) -
Analyzing the Stability for the Motion of an Unstretched Double Pendulum near Resonance
由: Tarek S. Amer, et al.
出版: (2021-10-01) -
The vibrational motion of a spring pendulum in a fluid flow
由: M.A. Bek, et al.
出版: (2020-12-01) -
Influence of the Motion of a Spring Pendulum on Energy-Harvesting Devices
由: Mohamed K. Abohamer, et al.
出版: (2021-09-01) -
Resonance in the Cart-Pendulum System—An Asymptotic Approach
由: Wael S. Amer, et al.
出版: (2021-12-01)