On positive solutions of functional-differential equations in banach spaces

<p/> <p>In this paper, we deal with two point boundary value problem (BVP) for the functional-differential equation of second order <inline-formula><graphic file="1029-242X-2001-507237-i1.gif"/></inline-formula> where the function <inline-formula><gra...

Full description

Bibliographic Details
Main Author: Zima Miros&#322;awa
Format: Article
Language:English
Published: SpringerOpen 2001-01-01
Series:Journal of Inequalities and Applications
Subjects:
Online Access:http://www.journalofinequalitiesandapplications.com/content/6/507237
_version_ 1818943759713304576
author Zima Miros&#322;awa
author_facet Zima Miros&#322;awa
author_sort Zima Miros&#322;awa
collection DOAJ
description <p/> <p>In this paper, we deal with two point boundary value problem (BVP) for the functional-differential equation of second order <inline-formula><graphic file="1029-242X-2001-507237-i1.gif"/></inline-formula> where the function <inline-formula><graphic file="1029-242X-2001-507237-i2.gif"/></inline-formula> takes values in a cone <inline-formula><graphic file="1029-242X-2001-507237-i3.gif"/></inline-formula> of a Banach space <inline-formula><graphic file="1029-242X-2001-507237-i4.gif"/></inline-formula>. For <inline-formula><graphic file="1029-242X-2001-507237-i5.gif"/></inline-formula> and <inline-formula><graphic file="1029-242X-2001-507237-i6.gif"/></inline-formula> we obtain the BVP with reflection of the argument. Applying fixed point theorem on strict set-contraction from G. Li, <it>Proc. Amer. Math. Soc.</it> 97 (1986), 277&#8211;280, we prove the existence of positive solution in the space <inline-formula><graphic file="1029-242X-2001-507237-i7.gif"/></inline-formula>. Some inequalities involving <inline-formula><graphic file="1029-242X-2001-507237-i8.gif"/></inline-formula> and the respective Green's function are used. We also give the application of our existence results to the infinite system of functional&#8211;differential equations in the case <inline-formula><graphic file="1029-242X-2001-507237-i9.gif"/></inline-formula>.</p>
first_indexed 2024-12-20T07:32:26Z
format Article
id doaj.art-a2eaba4dfd1240ba88af354cd443ad45
institution Directory Open Access Journal
issn 1025-5834
1029-242X
language English
last_indexed 2024-12-20T07:32:26Z
publishDate 2001-01-01
publisher SpringerOpen
record_format Article
series Journal of Inequalities and Applications
spelling doaj.art-a2eaba4dfd1240ba88af354cd443ad452022-12-21T19:48:23ZengSpringerOpenJournal of Inequalities and Applications1025-58341029-242X2001-01-0120013507237On positive solutions of functional-differential equations in banach spacesZima Miros&#322;awa<p/> <p>In this paper, we deal with two point boundary value problem (BVP) for the functional-differential equation of second order <inline-formula><graphic file="1029-242X-2001-507237-i1.gif"/></inline-formula> where the function <inline-formula><graphic file="1029-242X-2001-507237-i2.gif"/></inline-formula> takes values in a cone <inline-formula><graphic file="1029-242X-2001-507237-i3.gif"/></inline-formula> of a Banach space <inline-formula><graphic file="1029-242X-2001-507237-i4.gif"/></inline-formula>. For <inline-formula><graphic file="1029-242X-2001-507237-i5.gif"/></inline-formula> and <inline-formula><graphic file="1029-242X-2001-507237-i6.gif"/></inline-formula> we obtain the BVP with reflection of the argument. Applying fixed point theorem on strict set-contraction from G. Li, <it>Proc. Amer. Math. Soc.</it> 97 (1986), 277&#8211;280, we prove the existence of positive solution in the space <inline-formula><graphic file="1029-242X-2001-507237-i7.gif"/></inline-formula>. Some inequalities involving <inline-formula><graphic file="1029-242X-2001-507237-i8.gif"/></inline-formula> and the respective Green's function are used. We also give the application of our existence results to the infinite system of functional&#8211;differential equations in the case <inline-formula><graphic file="1029-242X-2001-507237-i9.gif"/></inline-formula>.</p>http://www.journalofinequalitiesandapplications.com/content/6/507237Boundary value problem in a Banach spacePositive solutionConeFixed point theorem
spellingShingle Zima Miros&#322;awa
On positive solutions of functional-differential equations in banach spaces
Journal of Inequalities and Applications
Boundary value problem in a Banach space
Positive solution
Cone
Fixed point theorem
title On positive solutions of functional-differential equations in banach spaces
title_full On positive solutions of functional-differential equations in banach spaces
title_fullStr On positive solutions of functional-differential equations in banach spaces
title_full_unstemmed On positive solutions of functional-differential equations in banach spaces
title_short On positive solutions of functional-differential equations in banach spaces
title_sort on positive solutions of functional differential equations in banach spaces
topic Boundary value problem in a Banach space
Positive solution
Cone
Fixed point theorem
url http://www.journalofinequalitiesandapplications.com/content/6/507237
work_keys_str_mv AT zimamiros322awa onpositivesolutionsoffunctionaldifferentialequationsinbanachspaces