Hydrothermal Synthesis of Various Hierarchical ZnO Nanostructures and Their Methane Sensing Properties

Hierarchical flower-like ZnO nanorods, net-like ZnO nanofibers and ZnO nanobulks have been successfully synthesized via a surfactant assisted hydrothemal method. The synthesized products were characterized by X-ray powder diffraction and field emission scanning electron microscopy, respectively. A p...

Full description

Bibliographic Details
Main Authors: Lingna Xu, Weigen Chen, Qu Zhou, Shudi Peng
Format: Article
Language:English
Published: MDPI AG 2013-05-01
Series:Sensors
Subjects:
Online Access:http://www.mdpi.com/1424-8220/13/5/6171
Description
Summary:Hierarchical flower-like ZnO nanorods, net-like ZnO nanofibers and ZnO nanobulks have been successfully synthesized via a surfactant assisted hydrothemal method. The synthesized products were characterized by X-ray powder diffraction and field emission scanning electron microscopy, respectively. A possible growth mechanism of the various hierarchical ZnO nanostructures is discussed in detail. Gas sensors based on the as-prepared ZnO nanostructures were fabricated by screen-printing on a flat ceramic substrate. Furthermore, their gas sensing characteristics towards methane were systematically investigated. Methane is an important characteristic hydrocarbon contaminant found dissolved in power transformer oil as a result of faults. We find that the hierarchical flower-like ZnO nanorods and net-like ZnO nanofibers samples show higher gas response and lower operating temperature with rapid response-recovery time compared to those of sensors based on ZnO nanobulks. These results present a feasible way of exploring high performance sensing materials for on-site detection of characteristic fault gases dissolved in transformer oil.
ISSN:1424-8220