Spatiotemporal history of fault–fluid interaction in the Hurricane fault, western USA

<p>The Hurricane fault is a <span class="inline-formula">∼250</span>&thinsp;km long, west-dipping, segmented normal fault zone located along the transition between the Colorado Plateau and the Basin and Range tectonic provinces in the western USA. Extensive evidence o...

Full description

Bibliographic Details
Main Authors: J. M. Koger, D. L. Newell
Format: Article
Language:English
Published: Copernicus Publications 2020-11-01
Series:Solid Earth
Online Access:https://se.copernicus.org/articles/11/1969/2020/se-11-1969-2020.pdf
Description
Summary:<p>The Hurricane fault is a <span class="inline-formula">∼250</span>&thinsp;km long, west-dipping, segmented normal fault zone located along the transition between the Colorado Plateau and the Basin and Range tectonic provinces in the western USA. Extensive evidence of fault–fluid interaction includes calcite mineralization and veining. Calcite vein carbon (<span class="inline-formula"><i>δ</i><sup>13</sup></span>C<span class="inline-formula"><sub>VPDB</sub></span>) and oxygen (<span class="inline-formula"><i>δ</i><sup>18</sup></span>O<span class="inline-formula"><sub>VPDB</sub></span>) stable isotope ratios range from <span class="inline-formula">−4.5</span>&thinsp;‰ to 3.8&thinsp;‰ and from <span class="inline-formula">−22.1</span>&thinsp;‰ to <span class="inline-formula">−1.1</span>&thinsp;‰, respectively. Fluid inclusion microthermometry constrains paleofluid temperatures and salinities from 45 to 160&thinsp;<span class="inline-formula"><sup>∘</sup></span>C and from 1.4&thinsp;wt&thinsp;% to 11.0&thinsp;wt&thinsp;% as NaCl, respectively. These data suggest mixing between two primary fluid sources, including infiltrating meteoric water (<span class="inline-formula">70±10</span>&thinsp;<span class="inline-formula"><sup>∘</sup></span>C, <span class="inline-formula">∼1.5</span>&thinsp;wt&thinsp;% NaCl, <span class="inline-formula"><i>δ</i><sup>18</sup></span>O<span class="inline-formula"><sub>VSMOW</sub></span> <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M15" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>∼</mo><mo>-</mo><mn mathvariant="normal">10</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="32pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="70a5751a08a5782d3837653a833a8611"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="se-11-1969-2020-ie00001.svg" width="32pt" height="10pt" src="se-11-1969-2020-ie00001.png"/></svg:svg></span></span>&thinsp;‰) and sedimentary brine (<span class="inline-formula">100±25</span>&thinsp;<span class="inline-formula"><sup>∘</sup></span>C, <span class="inline-formula">∼11</span>&thinsp;wt&thinsp;% NaCl, <span class="inline-formula"><i>δ</i><sup>18</sup></span>O<span class="inline-formula"><sub>VSMOW</sub></span>&thinsp;<span class="inline-formula">∼</span>&thinsp;5&thinsp;‰). Interpreted carbon sources include crustal- or magmatic-derived CO<span class="inline-formula"><sub>2</sub></span>, carbonate bedrock, and hydrocarbons. Uranium–thorium (U–Th) dates from five calcite vein samples indicate punctuated fluid flow and fracture healing at <span class="inline-formula">539±10.8</span> (<span class="inline-formula">1<i>σ</i></span>), <span class="inline-formula">287.9±5.8</span>, <span class="inline-formula">86.2±1.7</span>, and <span class="inline-formula">86.0±0.2</span>&thinsp;ka in the upper 500&thinsp;m of the crust. Collectively, data predominantly from the footwall damage zone imply that the Hurricane fault imparts a strong influence on the regional flow of crustal fluids and that the formation of veins in the shallow parts of the fault damage zone has important implications for the evolution of fault strength and permeability.</p>
ISSN:1869-9510
1869-9529