Experimenting with Training a Neural Network in Transkribus to Recognise Text in a Multilingual and Multi-Authored Manuscript Collection

This work aims at developing an optimal strategy to automatically transcribe a large quantity of uncategorised, digitised archival documents when resources include handwritten text by multiple authors and in several languages. We present a comparative study to establish the efficiency of a single mu...

Descripció completa

Dades bibliogràfiques
Autors principals: Carlotta Capurro, Vera Provatorova, Evangelos Kanoulas
Format: Article
Idioma:English
Publicat: MDPI AG 2023-11-01
Col·lecció:Heritage
Matèries:
Accés en línia:https://www.mdpi.com/2571-9408/6/12/392
Descripció
Sumari:This work aims at developing an optimal strategy to automatically transcribe a large quantity of uncategorised, digitised archival documents when resources include handwritten text by multiple authors and in several languages. We present a comparative study to establish the efficiency of a single multilingual handwritten text recognition (HTR) model trained on multiple handwriting styles instead of using a separate model for every language. When successful, this approach allows us to automate the transcription of the archive, reducing manual annotation efforts and facilitating information retrieval. To train the model, we used the material from the personal archive of the Dutch glass artist Sybren Valkema (1916–1996), processing it with Transkribus.
ISSN:2571-9408