Niobium Tungsten Oxide in a Green Water-in-Salt Electrolyte Enables Ultra-Stable Aqueous Lithium-Ion Capacitors

Abstract Aqueous hybrid supercapacitors are attracting increasing attention due to their potential low cost, high safety and eco-friendliness. However, the narrow operating potential window of aqueous electrolyte and the lack of suitable negative electrode materials seriously hinder its future appli...

Full description

Bibliographic Details
Main Authors: Shengyang Dong, Yi Wang, Chenglong Chen, Laifa Shen, Xiaogang Zhang
Format: Article
Language:English
Published: SpringerOpen 2020-08-01
Series:Nano-Micro Letters
Subjects:
Online Access:http://link.springer.com/article/10.1007/s40820-020-00508-z
Description
Summary:Abstract Aqueous hybrid supercapacitors are attracting increasing attention due to their potential low cost, high safety and eco-friendliness. However, the narrow operating potential window of aqueous electrolyte and the lack of suitable negative electrode materials seriously hinder its future applications. Here, we explore high concentrated lithium acetate with high ionic conductivity of 65.5 mS cm−1 as a green “water-in-salt” electrolyte, providing wide voltage window up to 2.8 V. It facilitates the reversible function of niobium tungsten oxide, Nb18W16O93, that otherwise only operations in organic electrolytes previously. The Nb18W16O93 with lithium-ion intercalation pseudocapacitive behavior exhibits excellent rate performance, high areal capacity, and ultra-long cycling stability. An aqueous lithium-ion hybrid capacitor is developed by using Nb18W16O93 as negative electrode combined with graphene as positive electrode in lithium acetate-based “water-in-salt” electrolyte, delivering a high energy density of 41.9 W kg−1, high power density of 20,000 W kg−1 and unexceptionable stability of 50,000 cycles.
ISSN:2311-6706
2150-5551