Design and Experimental Tests of a Buoyancy Change Module for Autonomous Underwater Vehicles

Ocean exploration is of major importance for several reasons, including energy and mineral resource retrieval, sovereignty, and environmental concerns. The use of autonomous underwater vehicles (AUV) has thus been receiving increased attention from the scientific community. In this context, it has b...

Full description

Bibliographic Details
Main Authors: J. Falcão Carneiro, J. Bravo Pinto, F. Gomes de Almeida, N. A. Cruz
Format: Article
Language:English
Published: MDPI AG 2022-09-01
Series:Actuators
Subjects:
Online Access:https://www.mdpi.com/2076-0825/11/9/254
Description
Summary:Ocean exploration is of major importance for several reasons, including energy and mineral resource retrieval, sovereignty, and environmental concerns. The use of autonomous underwater vehicles (AUV) has thus been receiving increased attention from the scientific community. In this context, it has been shown that the use of buoyancy change modules (BCMs) can significantly improve the energy efficiency of an AUV. However, the literature regarding the detailed design of these modules is scarce. This paper contributes to this field by describing the development of an electromechanical buoyancy change module prototype to be incorporated into an existing AUV. A detailed description of the constraints and compromises existing in the design of the device components is presented. In addition, the mechanical design of the hull based on FEM simulations is described in detail. The prototype is experimentally tested in a shallow pool where its full functionality is shown. The paper also presents preliminary experimental values of the power consumption of the device and compares them with the ones provided by existing models in the literature.
ISSN:2076-0825