Improved weed segmentation in UAV imagery of sorghum fields with a combined deblurring segmentation model
Abstract Background Efficient and site-specific weed management is a critical step in many agricultural tasks. Image captures from drones and modern machine learning based computer vision methods can be used to assess weed infestation in agricultural fields more efficiently. However, the image quali...
Asıl Yazarlar: | Nikita Genze, Maximilian Wirth, Christian Schreiner, Raymond Ajekwe, Michael Grieb, Dominik G. Grimm |
---|---|
Materyal Türü: | Makale |
Dil: | English |
Baskı/Yayın Bilgisi: |
BMC
2023-08-01
|
Seri Bilgileri: | Plant Methods |
Konular: | |
Online Erişim: | https://doi.org/10.1186/s13007-023-01060-8 |
Benzer Materyaller
-
E2S: A UAV-Based Levee Crack Segmentation Framework Using the Unsupervised Deblurring Technique
Yazar:: Fangyi Wang, ve diğerleri
Baskı/Yayın Bilgisi: (2025-03-01) -
A Novel Method for the Deblurring of Photogrammetric Images Using Conditional Generative Adversarial Networks
Yazar:: Pawel Burdziakowski
Baskı/Yayın Bilgisi: (2020-08-01) -
SR-DeblurUGAN: An End-to-End Super-Resolution and Deblurring Model with High Performance
Yazar:: Yuzhen Xiao, ve diğerleri
Baskı/Yayın Bilgisi: (2022-06-01) -
Blind Deblurring Based on Sigmoid Function
Yazar:: Shuhan Sun, ve diğerleri
Baskı/Yayın Bilgisi: (2021-05-01) -
A Motion Deblurring Network for Enhancing UAV Image Quality in Bridge Inspection
Yazar:: Jin-Hwan Lee, ve diğerleri
Baskı/Yayın Bilgisi: (2023-11-01)