Comprehensive Survey of Consensus Docking for High-Throughput Virtual Screening

The rapid advances of 3D techniques for the structural determination of proteins and the development of numerous computational methods and strategies have led to identifying highly active compounds in computer drug design. Molecular docking is a method widely used in high-throughput virtual screenin...

Full description

Bibliographic Details
Main Authors: Clara Blanes-Mira, Pilar Fernández-Aguado, Jorge de Andrés-López, Asia Fernández-Carvajal, Antonio Ferrer-Montiel, Gregorio Fernández-Ballester
Format: Article
Language:English
Published: MDPI AG 2022-12-01
Series:Molecules
Subjects:
Online Access:https://www.mdpi.com/1420-3049/28/1/175
_version_ 1797431433875161088
author Clara Blanes-Mira
Pilar Fernández-Aguado
Jorge de Andrés-López
Asia Fernández-Carvajal
Antonio Ferrer-Montiel
Gregorio Fernández-Ballester
author_facet Clara Blanes-Mira
Pilar Fernández-Aguado
Jorge de Andrés-López
Asia Fernández-Carvajal
Antonio Ferrer-Montiel
Gregorio Fernández-Ballester
author_sort Clara Blanes-Mira
collection DOAJ
description The rapid advances of 3D techniques for the structural determination of proteins and the development of numerous computational methods and strategies have led to identifying highly active compounds in computer drug design. Molecular docking is a method widely used in high-throughput virtual screening campaigns to filter potential ligands targeted to proteins. A great variety of docking programs are currently available, which differ in the algorithms and approaches used to predict the binding mode and the affinity of the ligand. All programs heavily rely on scoring functions to accurately predict ligand binding affinity, and despite differences in performance, none of these docking programs is preferable to the others. To overcome this problem, consensus scoring methods improve the outcome of virtual screening by averaging the rank or score of individual molecules obtained from different docking programs. The successful application of consensus docking in high-throughput virtual screening highlights the need to optimize the predictive power of molecular docking methods.
first_indexed 2024-03-09T09:44:58Z
format Article
id doaj.art-a34423f4ef554eb78d7fa26dfc7f73fa
institution Directory Open Access Journal
issn 1420-3049
language English
last_indexed 2024-03-09T09:44:58Z
publishDate 2022-12-01
publisher MDPI AG
record_format Article
series Molecules
spelling doaj.art-a34423f4ef554eb78d7fa26dfc7f73fa2023-12-02T00:40:57ZengMDPI AGMolecules1420-30492022-12-0128117510.3390/molecules28010175Comprehensive Survey of Consensus Docking for High-Throughput Virtual ScreeningClara Blanes-Mira0Pilar Fernández-Aguado1Jorge de Andrés-López2Asia Fernández-Carvajal3Antonio Ferrer-Montiel4Gregorio Fernández-Ballester5Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Av. de la Universidad s/n, 03202 Elche, SpainInstituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Av. de la Universidad s/n, 03202 Elche, SpainInstituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Av. de la Universidad s/n, 03202 Elche, SpainInstituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Av. de la Universidad s/n, 03202 Elche, SpainInstituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Av. de la Universidad s/n, 03202 Elche, SpainInstituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Av. de la Universidad s/n, 03202 Elche, SpainThe rapid advances of 3D techniques for the structural determination of proteins and the development of numerous computational methods and strategies have led to identifying highly active compounds in computer drug design. Molecular docking is a method widely used in high-throughput virtual screening campaigns to filter potential ligands targeted to proteins. A great variety of docking programs are currently available, which differ in the algorithms and approaches used to predict the binding mode and the affinity of the ligand. All programs heavily rely on scoring functions to accurately predict ligand binding affinity, and despite differences in performance, none of these docking programs is preferable to the others. To overcome this problem, consensus scoring methods improve the outcome of virtual screening by averaging the rank or score of individual molecules obtained from different docking programs. The successful application of consensus docking in high-throughput virtual screening highlights the need to optimize the predictive power of molecular docking methods.https://www.mdpi.com/1420-3049/28/1/175molecular dockingvirtual screeningconsensus dockingbinding sitescoring functiondrug discovery
spellingShingle Clara Blanes-Mira
Pilar Fernández-Aguado
Jorge de Andrés-López
Asia Fernández-Carvajal
Antonio Ferrer-Montiel
Gregorio Fernández-Ballester
Comprehensive Survey of Consensus Docking for High-Throughput Virtual Screening
Molecules
molecular docking
virtual screening
consensus docking
binding site
scoring function
drug discovery
title Comprehensive Survey of Consensus Docking for High-Throughput Virtual Screening
title_full Comprehensive Survey of Consensus Docking for High-Throughput Virtual Screening
title_fullStr Comprehensive Survey of Consensus Docking for High-Throughput Virtual Screening
title_full_unstemmed Comprehensive Survey of Consensus Docking for High-Throughput Virtual Screening
title_short Comprehensive Survey of Consensus Docking for High-Throughput Virtual Screening
title_sort comprehensive survey of consensus docking for high throughput virtual screening
topic molecular docking
virtual screening
consensus docking
binding site
scoring function
drug discovery
url https://www.mdpi.com/1420-3049/28/1/175
work_keys_str_mv AT clarablanesmira comprehensivesurveyofconsensusdockingforhighthroughputvirtualscreening
AT pilarfernandezaguado comprehensivesurveyofconsensusdockingforhighthroughputvirtualscreening
AT jorgedeandreslopez comprehensivesurveyofconsensusdockingforhighthroughputvirtualscreening
AT asiafernandezcarvajal comprehensivesurveyofconsensusdockingforhighthroughputvirtualscreening
AT antonioferrermontiel comprehensivesurveyofconsensusdockingforhighthroughputvirtualscreening
AT gregoriofernandezballester comprehensivesurveyofconsensusdockingforhighthroughputvirtualscreening