An AVMD Method Based on Energy Ratio and Deep Belief Network for Fault Identification of Automation Transmission Device

Considering that the vibration signals of gears and bearings in the automatic transmission device are complex and the fault features are difficult to extract. This paper proposes a method for extracting fault features of transmission device using adaptive variational modal decomposition (AVMD), and...

Full description

Bibliographic Details
Main Authors: Feng Ding, Yuan Xia, Jianhui Tian, Xinrui Zhang, Guangchu Hu
Format: Article
Language:English
Published: IEEE 2021-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/9438048/
Description
Summary:Considering that the vibration signals of gears and bearings in the automatic transmission device are complex and the fault features are difficult to extract. This paper proposes a method for extracting fault features of transmission device using adaptive variational modal decomposition (AVMD), and uses deep belief network (DBN) for pattern recognition. The vibration signal is decomposed by AVMD using energy ratio method. The intrinsic mode function (IMF) with abundant fault information is obtained. By calculating the energy entropy of each IMF component and form a high-dimensional feature vector as the input of DBN to establish an early fault identification model. The early fault data of the PHM2009 transmission device experimental platform was selected for identification and analysis. The identification results show that AVMD can extract the weak features of transmission device fault signals more accurately than empirical mode decomposition (EMD). Moreover, DBN has a higher fault identification accuracy rate than support vector machine (SVM), probabilistic neural network (PNN), back propagation neural network (BP) and Kohonen self-organizing competition neural network.
ISSN:2169-3536