2 × 2 Matrices: Manifolds, Realizations, Applications

Both geometric and wave optical models, as well as classical and quantum mechanics, realize linear transformations with matrices; for plane optics, these are <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow>...

Full description

Bibliographic Details
Main Authors: Kenan Uriostegui, Kurt Bernardo Wolf
Format: Article
Language:English
Published: MDPI AG 2021-08-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/11/16/7479
Description
Summary:Both geometric and wave optical models, as well as classical and quantum mechanics, realize linear transformations with matrices; for plane optics, these are <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2</mn><mo>×</mo><mn>2</mn></mrow></semantics></math></inline-formula> and of unit determinant. Students and some researchers could assume that the structure of this matrix group is fairly evident and hardly interesting. However, the properties and applications even of this lowest <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2</mn><mo>×</mo><mn>2</mn></mrow></semantics></math></inline-formula> case are already unexpectedly rich. While in mechanics they cover classical angular momentum, quantum spin, and represent ‘<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2</mn><mo>+</mo><mn>1</mn></mrow></semantics></math></inline-formula>’ relativity, in optical models they lead from the geometrical description of light propagation in the paraxial regime to wave optics via linear canonical transforms requiring a more penetrating view of their manifold structure and multiple covers. The purpose of this review article is to highlight the topological space of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2</mn><mo>×</mo><mn>2</mn></mrow></semantics></math></inline-formula> matrices as it applies to classical versus quantum and wave models, to underline how the latter requires the double cover of the former, thus using <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2</mn><mo>×</mo><mn>2</mn></mrow></semantics></math></inline-formula> matrices as an alternative viewpoint of the quantization process, beside the traditional characterization by commutation and non-commutations of position and momentum.
ISSN:2076-3417