Свёрточные сети для сегментации изображений крупных вен

В статье представлены результаты работы по сегментации изображений отдельных снимков магнитно-резонансной томографии забрюшинного пространства. Рассматриваются вопросы обнаружения и сегментации объектов магистральных вен забрюшинного пространства на основе свёрточной архитектуры нейронной сети для с...

Full description

Bibliographic Details
Main Authors: Егоров, А.А., Лысенкова, С.А., Мазайшвили, К.В.
Format: Article
Language:English
Published: KamGU by Vitus Bering 2020-06-01
Series:Vestnik KRAUNC: Fiziko-Matematičeskie Nauki
Subjects:
Online Access:http://krasec.ru/egorov312/
Description
Summary:В статье представлены результаты работы по сегментации изображений отдельных снимков магнитно-резонансной томографии забрюшинного пространства. Рассматриваются вопросы обнаружения и сегментации объектов магистральных вен забрюшинного пространства на основе свёрточной архитектуры нейронной сети для семантической пиксельной сегментации. Предлагается автоматический, точный и надежный метод с использованием свёрточной нейронной сети U-Net для извлечения сосудов вен из МРТ изображений. Глубокое обучение сети с большим рецептивным полем U-Net позволяет достичь значительных результатов даже при наличие не качественных исходных данных, на малых обучающих выборках. Стратегия расширения данных представляется эффективным способом уменьшения степени переобучения в распознавании медицинских образов — вен.
ISSN:2079-6641
2079-665X