On $A$-statistical convergence and $A$-statistical Cauchy via ideal

In [Analysis 1985, 5 (4), 301-313], J.A. Fridy proved an equivalence relation between statistical convergence and statistical Cauchy sequence. In this paper, we define $A^{I^{\ast }}$-statistical convergence and find under certain conditions, that it is equivalent to $A^{I}$-statistical convergence...

Full description

Bibliographic Details
Main Authors: O.H. Edely, M. Mursaleen
Format: Article
Language:English
Published: Vasyl Stefanyk Precarpathian National University 2022-12-01
Series:Karpatsʹkì Matematičnì Publìkacìï
Subjects:
Online Access:https://journals.pnu.edu.ua/index.php/cmp/article/view/5052
_version_ 1827281293124042752
author O.H. Edely
M. Mursaleen
author_facet O.H. Edely
M. Mursaleen
author_sort O.H. Edely
collection DOAJ
description In [Analysis 1985, 5 (4), 301-313], J.A. Fridy proved an equivalence relation between statistical convergence and statistical Cauchy sequence. In this paper, we define $A^{I^{\ast }}$-statistical convergence and find under certain conditions, that it is equivalent to $A^{I}$-statistical convergence defined in [Appl. Math. Lett. 2012, 25 (4), 733-738]. Moreover, we define $A^{I}$-  and $A^{I^{\ast }}$-statistical Cauchy sequences and find some equivalent relation with $A^{I}$-  and $A^{I^{\ast }}$-statistical convergence.
first_indexed 2024-04-24T08:56:53Z
format Article
id doaj.art-a360c505666f4eee955081d882062f05
institution Directory Open Access Journal
issn 2075-9827
2313-0210
language English
last_indexed 2024-04-24T08:56:53Z
publishDate 2022-12-01
publisher Vasyl Stefanyk Precarpathian National University
record_format Article
series Karpatsʹkì Matematičnì Publìkacìï
spelling doaj.art-a360c505666f4eee955081d882062f052024-04-16T07:12:26ZengVasyl Stefanyk Precarpathian National UniversityKarpatsʹkì Matematičnì Publìkacìï2075-98272313-02102022-12-0114244245210.15330/cmp.14.2.442-4524385On $A$-statistical convergence and $A$-statistical Cauchy via idealO.H. Edely0https://orcid.org/0000-0002-5770-1727M. Mursaleen1Tafila Technical University, P.O.Box 179, Tafila 66110, JordanAligarh Muslim University, Aligarh 202002, India; China Medical University Hospital, China Medical University, Taichung, TaiwanIn [Analysis 1985, 5 (4), 301-313], J.A. Fridy proved an equivalence relation between statistical convergence and statistical Cauchy sequence. In this paper, we define $A^{I^{\ast }}$-statistical convergence and find under certain conditions, that it is equivalent to $A^{I}$-statistical convergence defined in [Appl. Math. Lett. 2012, 25 (4), 733-738]. Moreover, we define $A^{I}$-  and $A^{I^{\ast }}$-statistical Cauchy sequences and find some equivalent relation with $A^{I}$-  and $A^{I^{\ast }}$-statistical convergence.https://journals.pnu.edu.ua/index.php/cmp/article/view/5052$i$-convergence$a^{i}$-statistical convergence$a^{i^{\ast }}$-statistical convergence$a^{i}$-statistical cauchy convergence$a^{i^{\ast }}$-statistical cauchy convergence
spellingShingle O.H. Edely
M. Mursaleen
On $A$-statistical convergence and $A$-statistical Cauchy via ideal
Karpatsʹkì Matematičnì Publìkacìï
$i$-convergence
$a^{i}$-statistical convergence
$a^{i^{\ast }}$-statistical convergence
$a^{i}$-statistical cauchy convergence
$a^{i^{\ast }}$-statistical cauchy convergence
title On $A$-statistical convergence and $A$-statistical Cauchy via ideal
title_full On $A$-statistical convergence and $A$-statistical Cauchy via ideal
title_fullStr On $A$-statistical convergence and $A$-statistical Cauchy via ideal
title_full_unstemmed On $A$-statistical convergence and $A$-statistical Cauchy via ideal
title_short On $A$-statistical convergence and $A$-statistical Cauchy via ideal
title_sort on a statistical convergence and a statistical cauchy via ideal
topic $i$-convergence
$a^{i}$-statistical convergence
$a^{i^{\ast }}$-statistical convergence
$a^{i}$-statistical cauchy convergence
$a^{i^{\ast }}$-statistical cauchy convergence
url https://journals.pnu.edu.ua/index.php/cmp/article/view/5052
work_keys_str_mv AT ohedely onastatisticalconvergenceandastatisticalcauchyviaideal
AT mmursaleen onastatisticalconvergenceandastatisticalcauchyviaideal