On the General Sum Distance Spectra of Digraphs
Let <i>G</i> be a strongly connected digraph, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>d</mi><mi>G</mi></msub><mrow><mo stretch...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-01-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/11/2/308 |
_version_ | 1797439095476060160 |
---|---|
author | Weige Xi Lixiang Cai Wutao Shang Yidan Su |
author_facet | Weige Xi Lixiang Cai Wutao Shang Yidan Su |
author_sort | Weige Xi |
collection | DOAJ |
description | Let <i>G</i> be a strongly connected digraph, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>d</mi><mi>G</mi></msub><mrow><mo stretchy="false">(</mo><msub><mi>v</mi><mi>i</mi></msub><mo>,</mo><msub><mi>v</mi><mi>j</mi></msub><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula> denote the distance from the vertex <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>v</mi><mi>i</mi></msub></semantics></math></inline-formula> to vertex <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>v</mi><mi>j</mi></msub></semantics></math></inline-formula> and be defined as the length of the shortest directed path from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>v</mi><mi>i</mi></msub></semantics></math></inline-formula> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>v</mi><mi>j</mi></msub></semantics></math></inline-formula> in <i>G</i>. The sum distance between vertices <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>v</mi><mi>i</mi></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>v</mi><mi>j</mi></msub></semantics></math></inline-formula> in <i>G</i> is defined as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>s</mi><msub><mi>d</mi><mi>G</mi></msub><mrow><mo stretchy="false">(</mo><msub><mi>v</mi><mi>i</mi></msub><mo>,</mo><msub><mi>v</mi><mi>j</mi></msub><mo stretchy="false">)</mo></mrow><mo>=</mo><msub><mi>d</mi><mi>G</mi></msub><mrow><mo stretchy="false">(</mo><msub><mi>v</mi><mi>i</mi></msub><mo>,</mo><msub><mi>v</mi><mi>j</mi></msub><mo stretchy="false">)</mo></mrow><mo>+</mo><msub><mi>d</mi><mi>G</mi></msub><mrow><mo stretchy="false">(</mo><msub><mi>v</mi><mi>j</mi></msub><mo>,</mo><msub><mi>v</mi><mi>i</mi></msub><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula>. The sum distance matrix of <i>G</i> is the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></semantics></math></inline-formula> matrix <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mi>D</mi><mrow><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo></mrow><mo>=</mo><msub><mrow><mo stretchy="false">(</mo><mi>s</mi><msub><mi>d</mi><mi>G</mi></msub><mrow><mo stretchy="false">(</mo><msub><mi>v</mi><mi>i</mi></msub><mo>,</mo><msub><mi>v</mi><mi>j</mi></msub><mo stretchy="false">)</mo></mrow><mo stretchy="false">)</mo></mrow><mrow><msub><mi>v</mi><mi>i</mi></msub><mo>,</mo><msub><mi>v</mi><mi>j</mi></msub><mo>∈</mo><mi>V</mi><mrow><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo></mrow></mrow></msub></mrow></semantics></math></inline-formula>. For vertex <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>v</mi><mi>i</mi></msub><mo>∈</mo><mi>V</mi><mrow><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula>, the sum transmission of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>v</mi><mi>i</mi></msub></semantics></math></inline-formula> in <i>G</i>, denoted by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><msub><mi>T</mi><mi>G</mi></msub><mrow><mo stretchy="false">(</mo><msub><mi>v</mi><mi>i</mi></msub><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula> or <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><msub><mi>T</mi><mi>i</mi></msub></mrow></semantics></math></inline-formula>, is the row sum of the sum distance matrix <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mi>D</mi><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula> corresponding to vertex <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>v</mi><mi>i</mi></msub></semantics></math></inline-formula>. Let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mi>T</mi><mrow><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo></mrow><mo>=</mo><mi>diag</mi><mrow><mo stretchy="false">(</mo><mi>S</mi><msub><mi>T</mi><mn>1</mn></msub><mo>,</mo><mi>S</mi><msub><mi>T</mi><mn>2</mn></msub><mo>,</mo><mo>…</mo><mo>,</mo><mi>S</mi><msub><mi>T</mi><mi>n</mi></msub><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula> be the diagonal matrix with the vertex sum transmissions of <i>G</i> in the diagonal and zeroes elsewhere. For any real number <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0</mn><mo>≤</mo><mi>α</mi><mo>≤</mo><mn>1</mn></mrow></semantics></math></inline-formula>, the general sum distance matrix of <i>G</i> is defined as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><msub><mi>D</mi><mi>α</mi></msub><mrow><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo></mrow><mo>=</mo><mi>α</mi><mi>S</mi><mi>T</mi><mrow><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo></mrow><mo>+</mo><mrow><mo stretchy="false">(</mo><mn>1</mn><mo>−</mo><mi>α</mi><mo stretchy="false">)</mo></mrow><mi>S</mi><mi>D</mi><mrow><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo></mrow><mo>.</mo></mrow></semantics></math></inline-formula> The eigenvalues of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><msub><mi>D</mi><mi>α</mi></msub><mrow><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula> are called the general sum distance eigenvalues of <i>G</i>, the spectral radius of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><msub><mi>D</mi><mi>α</mi></msub><mrow><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula>, i.e., the largest eigenvalue of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><msub><mi>D</mi><mi>α</mi></msub><mrow><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula>, is called the general sum distance spectral radius of <i>G</i>, denoted by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>μ</mi><mi>α</mi></msup><mrow><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula>. In this paper, we first give some spectral properties of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><msub><mi>D</mi><mi>α</mi></msub><mrow><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula>. We also characterize the digraph minimizes the general sum distance spectral radius among all strongly connected <i>r</i>-partite digraphs. Moreover, for digraphs that are not sum transmission regular, we give a lower bound on the difference between the maximum vertex sum transmission and the general sum distance spectral radius. |
first_indexed | 2024-03-09T11:46:43Z |
format | Article |
id | doaj.art-a373116899954b47adf1cccd38c69bbc |
institution | Directory Open Access Journal |
issn | 2227-7390 |
language | English |
last_indexed | 2024-03-09T11:46:43Z |
publishDate | 2023-01-01 |
publisher | MDPI AG |
record_format | Article |
series | Mathematics |
spelling | doaj.art-a373116899954b47adf1cccd38c69bbc2023-11-30T23:20:23ZengMDPI AGMathematics2227-73902023-01-0111230810.3390/math11020308On the General Sum Distance Spectra of DigraphsWeige Xi0Lixiang Cai1Wutao Shang2Yidan Su3College of Science, Northwest A&F University, Xianyang 712100, ChinaCollege of Science, Northwest A&F University, Xianyang 712100, ChinaCollege of Science, Northwest A&F University, Xianyang 712100, ChinaCollege of Science, Northwest A&F University, Xianyang 712100, ChinaLet <i>G</i> be a strongly connected digraph, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>d</mi><mi>G</mi></msub><mrow><mo stretchy="false">(</mo><msub><mi>v</mi><mi>i</mi></msub><mo>,</mo><msub><mi>v</mi><mi>j</mi></msub><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula> denote the distance from the vertex <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>v</mi><mi>i</mi></msub></semantics></math></inline-formula> to vertex <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>v</mi><mi>j</mi></msub></semantics></math></inline-formula> and be defined as the length of the shortest directed path from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>v</mi><mi>i</mi></msub></semantics></math></inline-formula> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>v</mi><mi>j</mi></msub></semantics></math></inline-formula> in <i>G</i>. The sum distance between vertices <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>v</mi><mi>i</mi></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>v</mi><mi>j</mi></msub></semantics></math></inline-formula> in <i>G</i> is defined as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>s</mi><msub><mi>d</mi><mi>G</mi></msub><mrow><mo stretchy="false">(</mo><msub><mi>v</mi><mi>i</mi></msub><mo>,</mo><msub><mi>v</mi><mi>j</mi></msub><mo stretchy="false">)</mo></mrow><mo>=</mo><msub><mi>d</mi><mi>G</mi></msub><mrow><mo stretchy="false">(</mo><msub><mi>v</mi><mi>i</mi></msub><mo>,</mo><msub><mi>v</mi><mi>j</mi></msub><mo stretchy="false">)</mo></mrow><mo>+</mo><msub><mi>d</mi><mi>G</mi></msub><mrow><mo stretchy="false">(</mo><msub><mi>v</mi><mi>j</mi></msub><mo>,</mo><msub><mi>v</mi><mi>i</mi></msub><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula>. The sum distance matrix of <i>G</i> is the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></semantics></math></inline-formula> matrix <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mi>D</mi><mrow><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo></mrow><mo>=</mo><msub><mrow><mo stretchy="false">(</mo><mi>s</mi><msub><mi>d</mi><mi>G</mi></msub><mrow><mo stretchy="false">(</mo><msub><mi>v</mi><mi>i</mi></msub><mo>,</mo><msub><mi>v</mi><mi>j</mi></msub><mo stretchy="false">)</mo></mrow><mo stretchy="false">)</mo></mrow><mrow><msub><mi>v</mi><mi>i</mi></msub><mo>,</mo><msub><mi>v</mi><mi>j</mi></msub><mo>∈</mo><mi>V</mi><mrow><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo></mrow></mrow></msub></mrow></semantics></math></inline-formula>. For vertex <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>v</mi><mi>i</mi></msub><mo>∈</mo><mi>V</mi><mrow><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula>, the sum transmission of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>v</mi><mi>i</mi></msub></semantics></math></inline-formula> in <i>G</i>, denoted by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><msub><mi>T</mi><mi>G</mi></msub><mrow><mo stretchy="false">(</mo><msub><mi>v</mi><mi>i</mi></msub><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula> or <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><msub><mi>T</mi><mi>i</mi></msub></mrow></semantics></math></inline-formula>, is the row sum of the sum distance matrix <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mi>D</mi><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula> corresponding to vertex <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>v</mi><mi>i</mi></msub></semantics></math></inline-formula>. Let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mi>T</mi><mrow><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo></mrow><mo>=</mo><mi>diag</mi><mrow><mo stretchy="false">(</mo><mi>S</mi><msub><mi>T</mi><mn>1</mn></msub><mo>,</mo><mi>S</mi><msub><mi>T</mi><mn>2</mn></msub><mo>,</mo><mo>…</mo><mo>,</mo><mi>S</mi><msub><mi>T</mi><mi>n</mi></msub><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula> be the diagonal matrix with the vertex sum transmissions of <i>G</i> in the diagonal and zeroes elsewhere. For any real number <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0</mn><mo>≤</mo><mi>α</mi><mo>≤</mo><mn>1</mn></mrow></semantics></math></inline-formula>, the general sum distance matrix of <i>G</i> is defined as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><msub><mi>D</mi><mi>α</mi></msub><mrow><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo></mrow><mo>=</mo><mi>α</mi><mi>S</mi><mi>T</mi><mrow><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo></mrow><mo>+</mo><mrow><mo stretchy="false">(</mo><mn>1</mn><mo>−</mo><mi>α</mi><mo stretchy="false">)</mo></mrow><mi>S</mi><mi>D</mi><mrow><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo></mrow><mo>.</mo></mrow></semantics></math></inline-formula> The eigenvalues of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><msub><mi>D</mi><mi>α</mi></msub><mrow><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula> are called the general sum distance eigenvalues of <i>G</i>, the spectral radius of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><msub><mi>D</mi><mi>α</mi></msub><mrow><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula>, i.e., the largest eigenvalue of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><msub><mi>D</mi><mi>α</mi></msub><mrow><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula>, is called the general sum distance spectral radius of <i>G</i>, denoted by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>μ</mi><mi>α</mi></msup><mrow><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula>. In this paper, we first give some spectral properties of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><msub><mi>D</mi><mi>α</mi></msub><mrow><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula>. We also characterize the digraph minimizes the general sum distance spectral radius among all strongly connected <i>r</i>-partite digraphs. Moreover, for digraphs that are not sum transmission regular, we give a lower bound on the difference between the maximum vertex sum transmission and the general sum distance spectral radius.https://www.mdpi.com/2227-7390/11/2/308strongly connected digraphgeneral sum distance matrixspectral radius |
spellingShingle | Weige Xi Lixiang Cai Wutao Shang Yidan Su On the General Sum Distance Spectra of Digraphs Mathematics strongly connected digraph general sum distance matrix spectral radius |
title | On the General Sum Distance Spectra of Digraphs |
title_full | On the General Sum Distance Spectra of Digraphs |
title_fullStr | On the General Sum Distance Spectra of Digraphs |
title_full_unstemmed | On the General Sum Distance Spectra of Digraphs |
title_short | On the General Sum Distance Spectra of Digraphs |
title_sort | on the general sum distance spectra of digraphs |
topic | strongly connected digraph general sum distance matrix spectral radius |
url | https://www.mdpi.com/2227-7390/11/2/308 |
work_keys_str_mv | AT weigexi onthegeneralsumdistancespectraofdigraphs AT lixiangcai onthegeneralsumdistancespectraofdigraphs AT wutaoshang onthegeneralsumdistancespectraofdigraphs AT yidansu onthegeneralsumdistancespectraofdigraphs |