On the General Sum Distance Spectra of Digraphs

Let <i>G</i> be a strongly connected digraph, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>d</mi><mi>G</mi></msub><mrow><mo stretch...

Full description

Bibliographic Details
Main Authors: Weige Xi, Lixiang Cai, Wutao Shang, Yidan Su
Format: Article
Language:English
Published: MDPI AG 2023-01-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/11/2/308
_version_ 1797439095476060160
author Weige Xi
Lixiang Cai
Wutao Shang
Yidan Su
author_facet Weige Xi
Lixiang Cai
Wutao Shang
Yidan Su
author_sort Weige Xi
collection DOAJ
description Let <i>G</i> be a strongly connected digraph, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>d</mi><mi>G</mi></msub><mrow><mo stretchy="false">(</mo><msub><mi>v</mi><mi>i</mi></msub><mo>,</mo><msub><mi>v</mi><mi>j</mi></msub><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula> denote the distance from the vertex <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>v</mi><mi>i</mi></msub></semantics></math></inline-formula> to vertex <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>v</mi><mi>j</mi></msub></semantics></math></inline-formula> and be defined as the length of the shortest directed path from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>v</mi><mi>i</mi></msub></semantics></math></inline-formula> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>v</mi><mi>j</mi></msub></semantics></math></inline-formula> in <i>G</i>. The sum distance between vertices <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>v</mi><mi>i</mi></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>v</mi><mi>j</mi></msub></semantics></math></inline-formula> in <i>G</i> is defined as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>s</mi><msub><mi>d</mi><mi>G</mi></msub><mrow><mo stretchy="false">(</mo><msub><mi>v</mi><mi>i</mi></msub><mo>,</mo><msub><mi>v</mi><mi>j</mi></msub><mo stretchy="false">)</mo></mrow><mo>=</mo><msub><mi>d</mi><mi>G</mi></msub><mrow><mo stretchy="false">(</mo><msub><mi>v</mi><mi>i</mi></msub><mo>,</mo><msub><mi>v</mi><mi>j</mi></msub><mo stretchy="false">)</mo></mrow><mo>+</mo><msub><mi>d</mi><mi>G</mi></msub><mrow><mo stretchy="false">(</mo><msub><mi>v</mi><mi>j</mi></msub><mo>,</mo><msub><mi>v</mi><mi>i</mi></msub><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula>. The sum distance matrix of <i>G</i> is the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></semantics></math></inline-formula> matrix <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mi>D</mi><mrow><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo></mrow><mo>=</mo><msub><mrow><mo stretchy="false">(</mo><mi>s</mi><msub><mi>d</mi><mi>G</mi></msub><mrow><mo stretchy="false">(</mo><msub><mi>v</mi><mi>i</mi></msub><mo>,</mo><msub><mi>v</mi><mi>j</mi></msub><mo stretchy="false">)</mo></mrow><mo stretchy="false">)</mo></mrow><mrow><msub><mi>v</mi><mi>i</mi></msub><mo>,</mo><msub><mi>v</mi><mi>j</mi></msub><mo>∈</mo><mi>V</mi><mrow><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo></mrow></mrow></msub></mrow></semantics></math></inline-formula>. For vertex <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>v</mi><mi>i</mi></msub><mo>∈</mo><mi>V</mi><mrow><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula>, the sum transmission of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>v</mi><mi>i</mi></msub></semantics></math></inline-formula> in <i>G</i>, denoted by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><msub><mi>T</mi><mi>G</mi></msub><mrow><mo stretchy="false">(</mo><msub><mi>v</mi><mi>i</mi></msub><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula> or <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><msub><mi>T</mi><mi>i</mi></msub></mrow></semantics></math></inline-formula>, is the row sum of the sum distance matrix <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mi>D</mi><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula> corresponding to vertex <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>v</mi><mi>i</mi></msub></semantics></math></inline-formula>. Let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mi>T</mi><mrow><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo></mrow><mo>=</mo><mi>diag</mi><mrow><mo stretchy="false">(</mo><mi>S</mi><msub><mi>T</mi><mn>1</mn></msub><mo>,</mo><mi>S</mi><msub><mi>T</mi><mn>2</mn></msub><mo>,</mo><mo>…</mo><mo>,</mo><mi>S</mi><msub><mi>T</mi><mi>n</mi></msub><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula> be the diagonal matrix with the vertex sum transmissions of <i>G</i> in the diagonal and zeroes elsewhere. For any real number <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0</mn><mo>≤</mo><mi>α</mi><mo>≤</mo><mn>1</mn></mrow></semantics></math></inline-formula>, the general sum distance matrix of <i>G</i> is defined as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><msub><mi>D</mi><mi>α</mi></msub><mrow><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo></mrow><mo>=</mo><mi>α</mi><mi>S</mi><mi>T</mi><mrow><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo></mrow><mo>+</mo><mrow><mo stretchy="false">(</mo><mn>1</mn><mo>−</mo><mi>α</mi><mo stretchy="false">)</mo></mrow><mi>S</mi><mi>D</mi><mrow><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo></mrow><mo>.</mo></mrow></semantics></math></inline-formula> The eigenvalues of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><msub><mi>D</mi><mi>α</mi></msub><mrow><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula> are called the general sum distance eigenvalues of <i>G</i>, the spectral radius of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><msub><mi>D</mi><mi>α</mi></msub><mrow><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula>, i.e., the largest eigenvalue of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><msub><mi>D</mi><mi>α</mi></msub><mrow><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula>, is called the general sum distance spectral radius of <i>G</i>, denoted by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>μ</mi><mi>α</mi></msup><mrow><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula>. In this paper, we first give some spectral properties of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><msub><mi>D</mi><mi>α</mi></msub><mrow><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula>. We also characterize the digraph minimizes the general sum distance spectral radius among all strongly connected <i>r</i>-partite digraphs. Moreover, for digraphs that are not sum transmission regular, we give a lower bound on the difference between the maximum vertex sum transmission and the general sum distance spectral radius.
first_indexed 2024-03-09T11:46:43Z
format Article
id doaj.art-a373116899954b47adf1cccd38c69bbc
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-09T11:46:43Z
publishDate 2023-01-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-a373116899954b47adf1cccd38c69bbc2023-11-30T23:20:23ZengMDPI AGMathematics2227-73902023-01-0111230810.3390/math11020308On the General Sum Distance Spectra of DigraphsWeige Xi0Lixiang Cai1Wutao Shang2Yidan Su3College of Science, Northwest A&F University, Xianyang 712100, ChinaCollege of Science, Northwest A&F University, Xianyang 712100, ChinaCollege of Science, Northwest A&F University, Xianyang 712100, ChinaCollege of Science, Northwest A&F University, Xianyang 712100, ChinaLet <i>G</i> be a strongly connected digraph, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>d</mi><mi>G</mi></msub><mrow><mo stretchy="false">(</mo><msub><mi>v</mi><mi>i</mi></msub><mo>,</mo><msub><mi>v</mi><mi>j</mi></msub><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula> denote the distance from the vertex <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>v</mi><mi>i</mi></msub></semantics></math></inline-formula> to vertex <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>v</mi><mi>j</mi></msub></semantics></math></inline-formula> and be defined as the length of the shortest directed path from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>v</mi><mi>i</mi></msub></semantics></math></inline-formula> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>v</mi><mi>j</mi></msub></semantics></math></inline-formula> in <i>G</i>. The sum distance between vertices <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>v</mi><mi>i</mi></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>v</mi><mi>j</mi></msub></semantics></math></inline-formula> in <i>G</i> is defined as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>s</mi><msub><mi>d</mi><mi>G</mi></msub><mrow><mo stretchy="false">(</mo><msub><mi>v</mi><mi>i</mi></msub><mo>,</mo><msub><mi>v</mi><mi>j</mi></msub><mo stretchy="false">)</mo></mrow><mo>=</mo><msub><mi>d</mi><mi>G</mi></msub><mrow><mo stretchy="false">(</mo><msub><mi>v</mi><mi>i</mi></msub><mo>,</mo><msub><mi>v</mi><mi>j</mi></msub><mo stretchy="false">)</mo></mrow><mo>+</mo><msub><mi>d</mi><mi>G</mi></msub><mrow><mo stretchy="false">(</mo><msub><mi>v</mi><mi>j</mi></msub><mo>,</mo><msub><mi>v</mi><mi>i</mi></msub><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula>. The sum distance matrix of <i>G</i> is the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></semantics></math></inline-formula> matrix <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mi>D</mi><mrow><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo></mrow><mo>=</mo><msub><mrow><mo stretchy="false">(</mo><mi>s</mi><msub><mi>d</mi><mi>G</mi></msub><mrow><mo stretchy="false">(</mo><msub><mi>v</mi><mi>i</mi></msub><mo>,</mo><msub><mi>v</mi><mi>j</mi></msub><mo stretchy="false">)</mo></mrow><mo stretchy="false">)</mo></mrow><mrow><msub><mi>v</mi><mi>i</mi></msub><mo>,</mo><msub><mi>v</mi><mi>j</mi></msub><mo>∈</mo><mi>V</mi><mrow><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo></mrow></mrow></msub></mrow></semantics></math></inline-formula>. For vertex <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>v</mi><mi>i</mi></msub><mo>∈</mo><mi>V</mi><mrow><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula>, the sum transmission of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>v</mi><mi>i</mi></msub></semantics></math></inline-formula> in <i>G</i>, denoted by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><msub><mi>T</mi><mi>G</mi></msub><mrow><mo stretchy="false">(</mo><msub><mi>v</mi><mi>i</mi></msub><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula> or <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><msub><mi>T</mi><mi>i</mi></msub></mrow></semantics></math></inline-formula>, is the row sum of the sum distance matrix <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mi>D</mi><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula> corresponding to vertex <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>v</mi><mi>i</mi></msub></semantics></math></inline-formula>. Let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mi>T</mi><mrow><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo></mrow><mo>=</mo><mi>diag</mi><mrow><mo stretchy="false">(</mo><mi>S</mi><msub><mi>T</mi><mn>1</mn></msub><mo>,</mo><mi>S</mi><msub><mi>T</mi><mn>2</mn></msub><mo>,</mo><mo>…</mo><mo>,</mo><mi>S</mi><msub><mi>T</mi><mi>n</mi></msub><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula> be the diagonal matrix with the vertex sum transmissions of <i>G</i> in the diagonal and zeroes elsewhere. For any real number <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0</mn><mo>≤</mo><mi>α</mi><mo>≤</mo><mn>1</mn></mrow></semantics></math></inline-formula>, the general sum distance matrix of <i>G</i> is defined as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><msub><mi>D</mi><mi>α</mi></msub><mrow><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo></mrow><mo>=</mo><mi>α</mi><mi>S</mi><mi>T</mi><mrow><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo></mrow><mo>+</mo><mrow><mo stretchy="false">(</mo><mn>1</mn><mo>−</mo><mi>α</mi><mo stretchy="false">)</mo></mrow><mi>S</mi><mi>D</mi><mrow><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo></mrow><mo>.</mo></mrow></semantics></math></inline-formula> The eigenvalues of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><msub><mi>D</mi><mi>α</mi></msub><mrow><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula> are called the general sum distance eigenvalues of <i>G</i>, the spectral radius of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><msub><mi>D</mi><mi>α</mi></msub><mrow><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula>, i.e., the largest eigenvalue of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><msub><mi>D</mi><mi>α</mi></msub><mrow><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula>, is called the general sum distance spectral radius of <i>G</i>, denoted by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>μ</mi><mi>α</mi></msup><mrow><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula>. In this paper, we first give some spectral properties of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><msub><mi>D</mi><mi>α</mi></msub><mrow><mo stretchy="false">(</mo><mi>G</mi><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula>. We also characterize the digraph minimizes the general sum distance spectral radius among all strongly connected <i>r</i>-partite digraphs. Moreover, for digraphs that are not sum transmission regular, we give a lower bound on the difference between the maximum vertex sum transmission and the general sum distance spectral radius.https://www.mdpi.com/2227-7390/11/2/308strongly connected digraphgeneral sum distance matrixspectral radius
spellingShingle Weige Xi
Lixiang Cai
Wutao Shang
Yidan Su
On the General Sum Distance Spectra of Digraphs
Mathematics
strongly connected digraph
general sum distance matrix
spectral radius
title On the General Sum Distance Spectra of Digraphs
title_full On the General Sum Distance Spectra of Digraphs
title_fullStr On the General Sum Distance Spectra of Digraphs
title_full_unstemmed On the General Sum Distance Spectra of Digraphs
title_short On the General Sum Distance Spectra of Digraphs
title_sort on the general sum distance spectra of digraphs
topic strongly connected digraph
general sum distance matrix
spectral radius
url https://www.mdpi.com/2227-7390/11/2/308
work_keys_str_mv AT weigexi onthegeneralsumdistancespectraofdigraphs
AT lixiangcai onthegeneralsumdistancespectraofdigraphs
AT wutaoshang onthegeneralsumdistancespectraofdigraphs
AT yidansu onthegeneralsumdistancespectraofdigraphs