Second order differentiability of the intermediate-point function in Cauchy's mean-value theorem

If the functions \(f,g:I\rightarrow \mathbb{R}\) are differentiable on the interval \(I\subseteq \mathbb{R}\), \(a\in I,\) then there exists a function \(\bar{c}:I\rightarrow I\) such that $$ \left[ f\left( x\right) -f\left( a\right) \right] g^{\left( 1\right) }\left( \bar{c}\left( x\right...

Full description

Bibliographic Details
Main Authors: Beatrix-Mihaela Pop, Dorel Duca
Format: Article
Language:English
Published: Publishing House of the Romanian Academy 2015-12-01
Series:Journal of Numerical Analysis and Approximation Theory
Subjects:
Online Access:https://www.ictp.acad.ro/jnaat/journal/article/view/1056
_version_ 1818199366198886400
author Beatrix-Mihaela Pop
Dorel Duca
author_facet Beatrix-Mihaela Pop
Dorel Duca
author_sort Beatrix-Mihaela Pop
collection DOAJ
description If the functions \(f,g:I\rightarrow \mathbb{R}\) are differentiable on the interval \(I\subseteq \mathbb{R}\), \(a\in I,\) then there exists a function \(\bar{c}:I\rightarrow I\) such that $$ \left[ f\left( x\right) -f\left( a\right) \right] g^{\left( 1\right) }\left( \bar{c}\left( x\right) \right) =\left[ g\left( x\right) -g\left( a\right) \right] f^{\left( 1\right) }\left( \bar{c}\left( x\right) \right) ,\text{ for }x\in I. $$ In this paper we study the differentiability of the function \(\bar{c}\), when $$ f^{\left( k\right) }\left( a\right) g^{\left( 1\right) }\left( a\right) =f^{\left( 1\right) }\left( a\right) g^{\left( k\right) }\left( a\right) , \text{ for all }k\in \{1,...,n-1\} $$ and $$ f^{\left( n\right) }\left( a\right) g^{\left( 1\right) }\left( a\right) \neq f^{\left( 1\right) }\left( a\right) g^{\left( n\right) }\left( a\right). $$
first_indexed 2024-12-12T02:20:37Z
format Article
id doaj.art-a3771e81a2df4d6088a7e1a8d49175da
institution Directory Open Access Journal
issn 2457-6794
2501-059X
language English
last_indexed 2024-12-12T02:20:37Z
publishDate 2015-12-01
publisher Publishing House of the Romanian Academy
record_format Article
series Journal of Numerical Analysis and Approximation Theory
spelling doaj.art-a3771e81a2df4d6088a7e1a8d49175da2022-12-22T00:41:41ZengPublishing House of the Romanian AcademyJournal of Numerical Analysis and Approximation Theory2457-67942501-059X2015-12-01441Second order differentiability of the intermediate-point function in Cauchy's mean-value theoremBeatrix-Mihaela Pop0Dorel Duca1Babeş-Bolyai UniversityBabeş-Bolyai University If the functions \(f,g:I\rightarrow \mathbb{R}\) are differentiable on the interval \(I\subseteq \mathbb{R}\), \(a\in I,\) then there exists a function \(\bar{c}:I\rightarrow I\) such that $$ \left[ f\left( x\right) -f\left( a\right) \right] g^{\left( 1\right) }\left( \bar{c}\left( x\right) \right) =\left[ g\left( x\right) -g\left( a\right) \right] f^{\left( 1\right) }\left( \bar{c}\left( x\right) \right) ,\text{ for }x\in I. $$ In this paper we study the differentiability of the function \(\bar{c}\), when $$ f^{\left( k\right) }\left( a\right) g^{\left( 1\right) }\left( a\right) =f^{\left( 1\right) }\left( a\right) g^{\left( k\right) }\left( a\right) , \text{ for all }k\in \{1,...,n-1\} $$ and $$ f^{\left( n\right) }\left( a\right) g^{\left( 1\right) }\left( a\right) \neq f^{\left( 1\right) }\left( a\right) g^{\left( n\right) }\left( a\right). $$ https://www.ictp.acad.ro/jnaat/journal/article/view/1056Cauchy theoremintermediate pointmean-value theorem
spellingShingle Beatrix-Mihaela Pop
Dorel Duca
Second order differentiability of the intermediate-point function in Cauchy's mean-value theorem
Journal of Numerical Analysis and Approximation Theory
Cauchy theorem
intermediate point
mean-value theorem
title Second order differentiability of the intermediate-point function in Cauchy's mean-value theorem
title_full Second order differentiability of the intermediate-point function in Cauchy's mean-value theorem
title_fullStr Second order differentiability of the intermediate-point function in Cauchy's mean-value theorem
title_full_unstemmed Second order differentiability of the intermediate-point function in Cauchy's mean-value theorem
title_short Second order differentiability of the intermediate-point function in Cauchy's mean-value theorem
title_sort second order differentiability of the intermediate point function in cauchy s mean value theorem
topic Cauchy theorem
intermediate point
mean-value theorem
url https://www.ictp.acad.ro/jnaat/journal/article/view/1056
work_keys_str_mv AT beatrixmihaelapop secondorderdifferentiabilityoftheintermediatepointfunctionincauchysmeanvaluetheorem
AT dorelduca secondorderdifferentiabilityoftheintermediatepointfunctionincauchysmeanvaluetheorem