Novel Multifunctional Ascorbic Triazole Derivatives for Amyloidogenic Pathway Inhibition, Anti-Inflammation, and Neuroprotection

Alzheimer’s disease (AD) is a common neurodegenerative disorder. The number of patients with AD is projected to reach 152 million by 2050. Donepezil, rivastigmine, galantamine, and memantine are the only four drugs currently approved by the United States Food and Drug Administration for AD treatment...

Full description

Bibliographic Details
Main Authors: Jutamas Jiaranaikulwanitch, Hataichanok Pandith, Sarin Tadtong, Phanit Thammarat, Supat Jiranusornkul, Nattapong Chauthong, Supitcha Nilkosol, Opa Vajragupta
Format: Article
Language:English
Published: MDPI AG 2021-03-01
Series:Molecules
Subjects:
Online Access:https://www.mdpi.com/1420-3049/26/6/1562
Description
Summary:Alzheimer’s disease (AD) is a common neurodegenerative disorder. The number of patients with AD is projected to reach 152 million by 2050. Donepezil, rivastigmine, galantamine, and memantine are the only four drugs currently approved by the United States Food and Drug Administration for AD treatment. However, these drugs can only alleviate AD symptoms. Thus, this research focuses on the discovery of novel lead compounds that possess multitarget regulation of AD etiopathology relating to amyloid cascade. The ascorbic acid structure has been designated as a core functional domain due to several characteristics, including antioxidant activities, amyloid aggregation inhibition, and the ability to be transported to the brain and neurons. Multifunctional ascorbic derivatives were synthesized by copper (I)-catalyzed azide–alkyne cycloaddition reaction (click chemistry). The in vitro and cell-based assays showed that compounds <b>2c</b> and <b>5c</b> exhibited prominent multifunctional activities as beta-secretase 1 inhibitors, amyloid aggregation inhibitors, and antioxidant, neuroprotectant, and anti-inflammatory agents. Significant changes in activities promoting neuroprotection and anti-inflammation were observed at a considerably low concentration at a nanomolar level. Moreover, an in silico study showed that compounds <b>2c</b> and <b>5c</b> were capable of being permeated across the blood–brain barrier by sodium-dependent vitamin C transporter-2.
ISSN:1420-3049