Volatility Dynamics of Non-Linear Volatile Time Series and Analysis of Information Flow: Evidence from Cryptocurrency Data
This paper aims to empirically examine long memory and bi-directional information flow between estimated volatilities of highly volatile time series datasets of five cryptocurrencies. We propose the employment of Garman and Klass (GK), Parkinson’s, Rogers and Satchell (RS), and Garman and Klass-Yang...
Główni autorzy: | Muhammad Sheraz, Silvia Dedu, Vasile Preda |
---|---|
Format: | Artykuł |
Język: | English |
Wydane: |
MDPI AG
2022-10-01
|
Seria: | Entropy |
Hasła przedmiotowe: | |
Dostęp online: | https://www.mdpi.com/1099-4300/24/10/1410 |
Podobne zapisy
-
Is Bitcoin Still a King? Relationships between Prices, Volatility and Liquidity of Cryptocurrencies during the Pandemic
od: Barbara Będowska-Sójka, i wsp.
Wydane: (2021-10-01) -
COVID-19 Effects on the Relationship between Cryptocurrencies: Can It Be Contagion? Insights from Econophysics Approaches
od: Dora Almeida, i wsp.
Wydane: (2023-01-01) -
A Novel Methodology to Calculate the Probability of Volatility Clusters in Financial Series: An Application to Cryptocurrency Markets
od: Venelina Nikolova, i wsp.
Wydane: (2020-07-01) -
Inferring directional interactions in collective dynamics: a critique to intrinsic mutual information
od: Pietro De Lellis, i wsp.
Wydane: (2022-01-01) -
COMPARATIVE ANALYSIS OF VOLATILITY OF CRYPTOCURRENCIES AND FIAT MONEY
od: G. O. Krylov, i wsp.
Wydane: (2018-05-01)