Synergistic Charge Storage Enhancement in Supercapacitors via Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene and CoMoO<sub>4</sub> Nanoparticles

MXene has emerged as a highly promising two-dimensional (2D) layered material with inherent advantages as an electrode material, such as a high electrical conductivity and spacious layer distances conducive to efficient ion transport. Despite these merits, the practical implementation faces challeng...

Full description

Bibliographic Details
Main Authors: Christine Young, An-Yi Wu, Ri-Yu Li
Format: Article
Language:English
Published: MDPI AG 2024-02-01
Series:Micromachines
Subjects:
Online Access:https://www.mdpi.com/2072-666X/15/2/234
_version_ 1827343153430003712
author Christine Young
An-Yi Wu
Ri-Yu Li
author_facet Christine Young
An-Yi Wu
Ri-Yu Li
author_sort Christine Young
collection DOAJ
description MXene has emerged as a highly promising two-dimensional (2D) layered material with inherent advantages as an electrode material, such as a high electrical conductivity and spacious layer distances conducive to efficient ion transport. Despite these merits, the practical implementation faces challenges due to MXene’s low theoretical capacitance and issues related to restacking. In order to overcome these limitations, we undertook a strategic approach by integrating Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene with cobalt molybdate (CoMoO<sub>4</sub>) nanoparticles. The CoMoO<sub>4</sub> nanoparticles bring to the table rich redox activity, high theoretical capacitance, and exceptional catalytic properties. Employing a facile hydrothermal method, we synthesized CoMoO<sub>4</sub>/Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> heterostructures, leveraging urea as a size-controlling agent for the CoMoO<sub>4</sub> precursors. This innovative heterostructure design utilizes Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene as a spacer, effectively mitigating excessive agglomeration, while CoMoO<sub>4</sub> contributes its enhanced redox reaction capabilities. The resulting CoMoO<sub>4</sub>/T<sub>i3</sub>C<sub>2</sub>T<sub>x</sub> MXene hybrid material exhibited 698 F g<sup>−1</sup> at a scan rate of 5 mV s<sup>−1</sup>, surpassing that of the individual pristine Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene (1.7 F g<sup>−1</sup>) and CoMoO<sub>4</sub> materials (501 F g<sup>−1</sup>). This integration presents a promising avenue for optimizing MXene-based electrode materials, addressing challenges and unlocking their full potential in various applications.
first_indexed 2024-03-07T22:21:07Z
format Article
id doaj.art-a398d0d2648e4571a987d9b9c5a03f8e
institution Directory Open Access Journal
issn 2072-666X
language English
last_indexed 2024-03-07T22:21:07Z
publishDate 2024-02-01
publisher MDPI AG
record_format Article
series Micromachines
spelling doaj.art-a398d0d2648e4571a987d9b9c5a03f8e2024-02-23T15:27:42ZengMDPI AGMicromachines2072-666X2024-02-0115223410.3390/mi15020234Synergistic Charge Storage Enhancement in Supercapacitors via Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene and CoMoO<sub>4</sub> NanoparticlesChristine Young0An-Yi Wu1Ri-Yu Li2Functional Nanoporous Materials Laboratory, Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Yunlin 640, TaiwanFunctional Nanoporous Materials Laboratory, Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Yunlin 640, TaiwanFunctional Nanoporous Materials Laboratory, Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Yunlin 640, TaiwanMXene has emerged as a highly promising two-dimensional (2D) layered material with inherent advantages as an electrode material, such as a high electrical conductivity and spacious layer distances conducive to efficient ion transport. Despite these merits, the practical implementation faces challenges due to MXene’s low theoretical capacitance and issues related to restacking. In order to overcome these limitations, we undertook a strategic approach by integrating Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene with cobalt molybdate (CoMoO<sub>4</sub>) nanoparticles. The CoMoO<sub>4</sub> nanoparticles bring to the table rich redox activity, high theoretical capacitance, and exceptional catalytic properties. Employing a facile hydrothermal method, we synthesized CoMoO<sub>4</sub>/Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> heterostructures, leveraging urea as a size-controlling agent for the CoMoO<sub>4</sub> precursors. This innovative heterostructure design utilizes Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene as a spacer, effectively mitigating excessive agglomeration, while CoMoO<sub>4</sub> contributes its enhanced redox reaction capabilities. The resulting CoMoO<sub>4</sub>/T<sub>i3</sub>C<sub>2</sub>T<sub>x</sub> MXene hybrid material exhibited 698 F g<sup>−1</sup> at a scan rate of 5 mV s<sup>−1</sup>, surpassing that of the individual pristine Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene (1.7 F g<sup>−1</sup>) and CoMoO<sub>4</sub> materials (501 F g<sup>−1</sup>). This integration presents a promising avenue for optimizing MXene-based electrode materials, addressing challenges and unlocking their full potential in various applications.https://www.mdpi.com/2072-666X/15/2/234MXeneCoMoO<sub>4</sub>binary transition metal oxidessupercapacitor
spellingShingle Christine Young
An-Yi Wu
Ri-Yu Li
Synergistic Charge Storage Enhancement in Supercapacitors via Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene and CoMoO<sub>4</sub> Nanoparticles
Micromachines
MXene
CoMoO<sub>4</sub>
binary transition metal oxides
supercapacitor
title Synergistic Charge Storage Enhancement in Supercapacitors via Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene and CoMoO<sub>4</sub> Nanoparticles
title_full Synergistic Charge Storage Enhancement in Supercapacitors via Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene and CoMoO<sub>4</sub> Nanoparticles
title_fullStr Synergistic Charge Storage Enhancement in Supercapacitors via Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene and CoMoO<sub>4</sub> Nanoparticles
title_full_unstemmed Synergistic Charge Storage Enhancement in Supercapacitors via Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene and CoMoO<sub>4</sub> Nanoparticles
title_short Synergistic Charge Storage Enhancement in Supercapacitors via Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene and CoMoO<sub>4</sub> Nanoparticles
title_sort synergistic charge storage enhancement in supercapacitors via ti sub 3 sub c sub 2 sub t sub x sub mxene and comoo sub 4 sub nanoparticles
topic MXene
CoMoO<sub>4</sub>
binary transition metal oxides
supercapacitor
url https://www.mdpi.com/2072-666X/15/2/234
work_keys_str_mv AT christineyoung synergisticchargestorageenhancementinsupercapacitorsviatisub3subcsub2subtsubxsubmxeneandcomoosub4subnanoparticles
AT anyiwu synergisticchargestorageenhancementinsupercapacitorsviatisub3subcsub2subtsubxsubmxeneandcomoosub4subnanoparticles
AT riyuli synergisticchargestorageenhancementinsupercapacitorsviatisub3subcsub2subtsubxsubmxeneandcomoosub4subnanoparticles