Synergistic Charge Storage Enhancement in Supercapacitors via Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene and CoMoO<sub>4</sub> Nanoparticles
MXene has emerged as a highly promising two-dimensional (2D) layered material with inherent advantages as an electrode material, such as a high electrical conductivity and spacious layer distances conducive to efficient ion transport. Despite these merits, the practical implementation faces challeng...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2024-02-01
|
Series: | Micromachines |
Subjects: | |
Online Access: | https://www.mdpi.com/2072-666X/15/2/234 |
_version_ | 1827343153430003712 |
---|---|
author | Christine Young An-Yi Wu Ri-Yu Li |
author_facet | Christine Young An-Yi Wu Ri-Yu Li |
author_sort | Christine Young |
collection | DOAJ |
description | MXene has emerged as a highly promising two-dimensional (2D) layered material with inherent advantages as an electrode material, such as a high electrical conductivity and spacious layer distances conducive to efficient ion transport. Despite these merits, the practical implementation faces challenges due to MXene’s low theoretical capacitance and issues related to restacking. In order to overcome these limitations, we undertook a strategic approach by integrating Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene with cobalt molybdate (CoMoO<sub>4</sub>) nanoparticles. The CoMoO<sub>4</sub> nanoparticles bring to the table rich redox activity, high theoretical capacitance, and exceptional catalytic properties. Employing a facile hydrothermal method, we synthesized CoMoO<sub>4</sub>/Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> heterostructures, leveraging urea as a size-controlling agent for the CoMoO<sub>4</sub> precursors. This innovative heterostructure design utilizes Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene as a spacer, effectively mitigating excessive agglomeration, while CoMoO<sub>4</sub> contributes its enhanced redox reaction capabilities. The resulting CoMoO<sub>4</sub>/T<sub>i3</sub>C<sub>2</sub>T<sub>x</sub> MXene hybrid material exhibited 698 F g<sup>−1</sup> at a scan rate of 5 mV s<sup>−1</sup>, surpassing that of the individual pristine Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene (1.7 F g<sup>−1</sup>) and CoMoO<sub>4</sub> materials (501 F g<sup>−1</sup>). This integration presents a promising avenue for optimizing MXene-based electrode materials, addressing challenges and unlocking their full potential in various applications. |
first_indexed | 2024-03-07T22:21:07Z |
format | Article |
id | doaj.art-a398d0d2648e4571a987d9b9c5a03f8e |
institution | Directory Open Access Journal |
issn | 2072-666X |
language | English |
last_indexed | 2024-03-07T22:21:07Z |
publishDate | 2024-02-01 |
publisher | MDPI AG |
record_format | Article |
series | Micromachines |
spelling | doaj.art-a398d0d2648e4571a987d9b9c5a03f8e2024-02-23T15:27:42ZengMDPI AGMicromachines2072-666X2024-02-0115223410.3390/mi15020234Synergistic Charge Storage Enhancement in Supercapacitors via Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene and CoMoO<sub>4</sub> NanoparticlesChristine Young0An-Yi Wu1Ri-Yu Li2Functional Nanoporous Materials Laboratory, Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Yunlin 640, TaiwanFunctional Nanoporous Materials Laboratory, Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Yunlin 640, TaiwanFunctional Nanoporous Materials Laboratory, Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Yunlin 640, TaiwanMXene has emerged as a highly promising two-dimensional (2D) layered material with inherent advantages as an electrode material, such as a high electrical conductivity and spacious layer distances conducive to efficient ion transport. Despite these merits, the practical implementation faces challenges due to MXene’s low theoretical capacitance and issues related to restacking. In order to overcome these limitations, we undertook a strategic approach by integrating Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene with cobalt molybdate (CoMoO<sub>4</sub>) nanoparticles. The CoMoO<sub>4</sub> nanoparticles bring to the table rich redox activity, high theoretical capacitance, and exceptional catalytic properties. Employing a facile hydrothermal method, we synthesized CoMoO<sub>4</sub>/Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> heterostructures, leveraging urea as a size-controlling agent for the CoMoO<sub>4</sub> precursors. This innovative heterostructure design utilizes Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene as a spacer, effectively mitigating excessive agglomeration, while CoMoO<sub>4</sub> contributes its enhanced redox reaction capabilities. The resulting CoMoO<sub>4</sub>/T<sub>i3</sub>C<sub>2</sub>T<sub>x</sub> MXene hybrid material exhibited 698 F g<sup>−1</sup> at a scan rate of 5 mV s<sup>−1</sup>, surpassing that of the individual pristine Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene (1.7 F g<sup>−1</sup>) and CoMoO<sub>4</sub> materials (501 F g<sup>−1</sup>). This integration presents a promising avenue for optimizing MXene-based electrode materials, addressing challenges and unlocking their full potential in various applications.https://www.mdpi.com/2072-666X/15/2/234MXeneCoMoO<sub>4</sub>binary transition metal oxidessupercapacitor |
spellingShingle | Christine Young An-Yi Wu Ri-Yu Li Synergistic Charge Storage Enhancement in Supercapacitors via Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene and CoMoO<sub>4</sub> Nanoparticles Micromachines MXene CoMoO<sub>4</sub> binary transition metal oxides supercapacitor |
title | Synergistic Charge Storage Enhancement in Supercapacitors via Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene and CoMoO<sub>4</sub> Nanoparticles |
title_full | Synergistic Charge Storage Enhancement in Supercapacitors via Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene and CoMoO<sub>4</sub> Nanoparticles |
title_fullStr | Synergistic Charge Storage Enhancement in Supercapacitors via Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene and CoMoO<sub>4</sub> Nanoparticles |
title_full_unstemmed | Synergistic Charge Storage Enhancement in Supercapacitors via Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene and CoMoO<sub>4</sub> Nanoparticles |
title_short | Synergistic Charge Storage Enhancement in Supercapacitors via Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene and CoMoO<sub>4</sub> Nanoparticles |
title_sort | synergistic charge storage enhancement in supercapacitors via ti sub 3 sub c sub 2 sub t sub x sub mxene and comoo sub 4 sub nanoparticles |
topic | MXene CoMoO<sub>4</sub> binary transition metal oxides supercapacitor |
url | https://www.mdpi.com/2072-666X/15/2/234 |
work_keys_str_mv | AT christineyoung synergisticchargestorageenhancementinsupercapacitorsviatisub3subcsub2subtsubxsubmxeneandcomoosub4subnanoparticles AT anyiwu synergisticchargestorageenhancementinsupercapacitorsviatisub3subcsub2subtsubxsubmxeneandcomoosub4subnanoparticles AT riyuli synergisticchargestorageenhancementinsupercapacitorsviatisub3subcsub2subtsubxsubmxeneandcomoosub4subnanoparticles |