Targeting oxidative stress for the treatment of ischemic stroke: Upstream and downstream therapeutic strategies

Excessive oxygen and its chemical derivatives, namely reactive oxygen species (ROS), produce oxidative stress that has been known to lead to cell injury in ischemic stroke. ROS can damage macromolecules such as proteins and lipids and leads to cell autophagy, apoptosis, and necrosis to the cells. Th...

Full description

Bibliographic Details
Main Authors: Wenjun Li, Shaohua Yang
Format: Article
Language:English
Published: Wolters Kluwer Medknow Publications 2016-01-01
Series:Brain Circulation
Subjects:
Online Access:http://www.braincirculation.org/article.asp?issn=2394-8108;year=2016;volume=2;issue=4;spage=153;epage=163;aulast=Li
Description
Summary:Excessive oxygen and its chemical derivatives, namely reactive oxygen species (ROS), produce oxidative stress that has been known to lead to cell injury in ischemic stroke. ROS can damage macromolecules such as proteins and lipids and leads to cell autophagy, apoptosis, and necrosis to the cells. This review describes studies on the generation of ROS, its role in the pathogenesis of ischemic stroke, and recent development in therapeutic strategies in reducing oxidative stress after ischemic stroke.
ISSN:2455-4626