End á´ª -Prime Submodules

      Let R be a commutative ring with identity and M  an unitary R-module. Let ï¤(M)  be the set of all submodules of M, and ï¹: ï¤(M)  ï¤(M)  {ï¦} be a function. We say that a proper submodule P of M is end-ï¹-prime if for each ï¡ ïƒŽ EndR(M) and x  M, if ï¡(x)  P, then either x ïƒ...

Full description

Bibliographic Details
Main Authors: Nuhad S. AL-Mothafar, Adwia J. Abdil -Khalik
Format: Article
Language:English
Published: University of Baghdad 2017-03-01
Series:Ibn Al-Haitham Journal for Pure and Applied Sciences
Subjects:
Online Access:https://jih.uobaghdad.edu.iq/index.php/j/article/view/115
_version_ 1811308153390759936
author Nuhad S. AL-Mothafar
Adwia J. Abdil -Khalik
author_facet Nuhad S. AL-Mothafar
Adwia J. Abdil -Khalik
author_sort Nuhad S. AL-Mothafar
collection DOAJ
description       Let R be a commutative ring with identity and M  an unitary R-module. Let ï¤(M)  be the set of all submodules of M, and ï¹: ï¤(M)  ï¤(M)  {ï¦} be a function. We say that a proper submodule P of M is end-ï¹-prime if for each ï¡ ïƒŽ EndR(M) and x  M, if ï¡(x)  P, then either x  P + ï¹(P) or ï¡(M) ïƒ P + ï¹(P). Some of the properties of this concept will be investigated. Some characterizations of end-ï¹-prime submodules will be given, and we show that under some assumtions prime submodules and end-ï¹-prime submodules are coincide.
first_indexed 2024-04-13T09:18:01Z
format Article
id doaj.art-a39c83089fc44e9a847aab353d76ee1a
institution Directory Open Access Journal
issn 1609-4042
2521-3407
language English
last_indexed 2024-04-13T09:18:01Z
publishDate 2017-03-01
publisher University of Baghdad
record_format Article
series Ibn Al-Haitham Journal for Pure and Applied Sciences
spelling doaj.art-a39c83089fc44e9a847aab353d76ee1a2022-12-22T02:52:42ZengUniversity of BaghdadIbn Al-Haitham Journal for Pure and Applied Sciences1609-40422521-34072017-03-01292End á´ª -Prime SubmodulesNuhad S. AL-MothafarAdwia J. Abdil -Khalik       Let R be a commutative ring with identity and M  an unitary R-module. Let ï¤(M)  be the set of all submodules of M, and ï¹: ï¤(M)  ï¤(M)  {ï¦} be a function. We say that a proper submodule P of M is end-ï¹-prime if for each ï¡ ïƒŽ EndR(M) and x  M, if ï¡(x)  P, then either x  P + ï¹(P) or ï¡(M) ïƒ P + ï¹(P). Some of the properties of this concept will be investigated. Some characterizations of end-ï¹-prime submodules will be given, and we show that under some assumtions prime submodules and end-ï¹-prime submodules are coincide. https://jih.uobaghdad.edu.iq/index.php/j/article/view/115Prime submoduleweakly prime submodulesɸ-prime submodules
spellingShingle Nuhad S. AL-Mothafar
Adwia J. Abdil -Khalik
End á´ª -Prime Submodules
Ibn Al-Haitham Journal for Pure and Applied Sciences
Prime submodule
weakly prime submodules
ɸ-prime submodules
title End á´ª -Prime Submodules
title_full End á´ª -Prime Submodules
title_fullStr End á´ª -Prime Submodules
title_full_unstemmed End á´ª -Prime Submodules
title_short End á´ª -Prime Submodules
title_sort end a´ª prime submodules
topic Prime submodule
weakly prime submodules
ɸ-prime submodules
url https://jih.uobaghdad.edu.iq/index.php/j/article/view/115
work_keys_str_mv AT nuhadsalmothafar endaaprimesubmodules
AT adwiajabdilkhalik endaaprimesubmodules