Summary: | Abstract Background Diffusion weighted imaging (DWI) has a good diagnostic value for malignant thyroid nodules, but the published protocols suffer from flaws and focus on the apparent diffusion coefficient (ADC). This study investigated the diagnostic performance of multiple MRI parameters in differentiating malignant from benign thyroid nodules. Methods This was a retrospective study of 181 consecutive patients (148 benign and 111 malignant nodules, confirmed by pathological results). The patients underwent conventional MRI, DWI, and dynamic contrast-enhanced MRI before surgery. The chi-square test and the Student t test were used to compare the conventional features and ADC value between malignant and benign groups. Multivariate logistic regression was used to identify the independent predictors and to construct a model. Receiver operator characteristic (ROC) curve analysis was used to assess the diagnostic performance of the independent variables and model. Results Tumor diameter, ADC value, cystic degeneration, pseudocapsule sign, high signal cystic area on T1-weighted imaging, ring sign in the delayed phase, and irregular shape showed significant differences between two groups (all P < 0.05). The multivariable analysis revealed that ADC value (OR = 694.006, P < 0.001), irregular shape (OR = 32.798, P < 0.001), ring sign in the delayed phase (OR = 20.381, P = 0.004), and cystic degeneration (OR = 8.468, P = 0.016) were independent predictors. Among them, ADC performed the best in discriminating benign from malignant nodules, with an area under the curve (AUC) of 0.95, 0.90 sensitivity, and 0.91 specificity. When the independent factors were combined, the diagnostic performance was improved with an AUC of 0.99, 0.97 sensitivity, and 0.95 specificity. Conclusions ADC value could discriminate between benign and malignant thyroid nodules with a good performance. Subjective features such as the ring sign, irregular shape, and cystic degeneration associated with malignant thyroid nodules could provide complementary information for differentiation.
|