A Voltammetric Sensor for the Determination of Hydroxylamine Using a Polypyrrole Nanotubes-Modified Electrode

In this work, we develop an electrochemical sensor using a polypyrrole nanotubes-modified graphite screen-printed electrode (PPy NTs/GSPE) for sensing hydroxylamine. The PPy NTs/GSPE-supported sensor has an appreciable electrocatalytic performance and great stability for hydroxylamine oxidation. Com...

Full description

Bibliographic Details
Main Authors: Peyman Mohammadzadeh Jahani, Hadi Beitollahi, Antonio Di Bartolomeo
Format: Article
Language:English
Published: MDPI AG 2022-07-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/12/15/7485
Description
Summary:In this work, we develop an electrochemical sensor using a polypyrrole nanotubes-modified graphite screen-printed electrode (PPy NTs/GSPE) for sensing hydroxylamine. The PPy NTs/GSPE-supported sensor has an appreciable electrocatalytic performance and great stability for hydroxylamine oxidation. Compared to a bare graphite screen-printed electrode, we demonstrate that using the PPy NTs/GSPE leads to a significant reduction in the oxidation potential of hydroxylamine. The standard curve shows a linear relationship ranging from 0.005 to 290.0 μM (R<sup>2</sup>  =  0.9998), with a high sensitivity (0.1349 μA/μM) and a narrow limit of detection (LOD) of 0.001 μM. In addition, the PPy NTs/GSPE has satisfactory outcomes for hydroxylamine detection in real specimens.
ISSN:2076-3417