Variational Approaches to Optimal Control Design for Elastic Body Motions

Variational and projection statements of an initial-boundary value problem for the direct and inverse dynamics of elastic bodies are proposed. An optimal control problem of 3D linear elastic motions for rectilinear beams with the rectangular cross section is studied. Based on the generalized formula...

Full description

Bibliographic Details
Main Authors: V.V. Saurin, G.V. Kostin
Format: Article
Language:English
Published: Kazan Federal University 2015-09-01
Series:Учёные записки Казанского университета. Серия Физико-математические науки
Subjects:
Online Access:https://kpfu.ru/portal/docs/F_599569477/157_3_phys_mat_14.pdf
_version_ 1797857434560102400
author V.V. Saurin
G.V. Kostin
author_facet V.V. Saurin
G.V. Kostin
author_sort V.V. Saurin
collection DOAJ
description Variational and projection statements of an initial-boundary value problem for the direct and inverse dynamics of elastic bodies are proposed. An optimal control problem of 3D linear elastic motions for rectilinear beams with the rectangular cross section is studied. Based on the generalized formulations, a numerical algorithm is developed to design the optimal displacement of such elastic beams. The results of numerical simulation and quality analysis are presented and discussed.
first_indexed 2024-04-09T20:56:40Z
format Article
id doaj.art-a3c9b48c8af040cfa551e9ccddc0e0f3
institution Directory Open Access Journal
issn 2541-7746
2500-2198
language English
last_indexed 2024-04-09T20:56:40Z
publishDate 2015-09-01
publisher Kazan Federal University
record_format Article
series Учёные записки Казанского университета. Серия Физико-математические науки
spelling doaj.art-a3c9b48c8af040cfa551e9ccddc0e0f32023-03-29T17:18:50ZengKazan Federal UniversityУчёные записки Казанского университета. Серия Физико-математические науки2541-77462500-21982015-09-011573122136Variational Approaches to Optimal Control Design for Elastic Body MotionsV.V. Saurin0G.V. Kostin1Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences, Moscow, 119526 RussiaIshlinsky Institute for Problems in Mechanics, Russian Academy of Sciences, Moscow, 119526 RussiaVariational and projection statements of an initial-boundary value problem for the direct and inverse dynamics of elastic bodies are proposed. An optimal control problem of 3D linear elastic motions for rectilinear beams with the rectangular cross section is studied. Based on the generalized formulations, a numerical algorithm is developed to design the optimal displacement of such elastic beams. The results of numerical simulation and quality analysis are presented and discussed.https://kpfu.ru/portal/docs/F_599569477/157_3_phys_mat_14.pdfoptimal controldynamicslinear theory of elasticityvariational principlessemi-discretization
spellingShingle V.V. Saurin
G.V. Kostin
Variational Approaches to Optimal Control Design for Elastic Body Motions
Учёные записки Казанского университета. Серия Физико-математические науки
optimal control
dynamics
linear theory of elasticity
variational principles
semi-discretization
title Variational Approaches to Optimal Control Design for Elastic Body Motions
title_full Variational Approaches to Optimal Control Design for Elastic Body Motions
title_fullStr Variational Approaches to Optimal Control Design for Elastic Body Motions
title_full_unstemmed Variational Approaches to Optimal Control Design for Elastic Body Motions
title_short Variational Approaches to Optimal Control Design for Elastic Body Motions
title_sort variational approaches to optimal control design for elastic body motions
topic optimal control
dynamics
linear theory of elasticity
variational principles
semi-discretization
url https://kpfu.ru/portal/docs/F_599569477/157_3_phys_mat_14.pdf
work_keys_str_mv AT vvsaurin variationalapproachestooptimalcontroldesignforelasticbodymotions
AT gvkostin variationalapproachestooptimalcontroldesignforelasticbodymotions