First-Principles Investigation of Size Effects on Cohesive Energies of Transition-Metal Nanoclusters

The cohesive energy of transition-metal nanoparticles is crucial to understanding their stability and fundamental properties, which are essential for developing new technologies and applications in fields such as catalysis, electronics, energy storage, and biomedical engineering. In this study, we s...

Full description

Bibliographic Details
Main Authors: Amogh Vig, Ethan Doan, Kesong Yang
Format: Article
Language:English
Published: MDPI AG 2023-08-01
Series:Nanomaterials
Subjects:
Online Access:https://www.mdpi.com/2079-4991/13/16/2356
Description
Summary:The cohesive energy of transition-metal nanoparticles is crucial to understanding their stability and fundamental properties, which are essential for developing new technologies and applications in fields such as catalysis, electronics, energy storage, and biomedical engineering. In this study, we systematically investigate the size-dependent cohesive energies of all the 3<i>d</i>, 4<i>d</i>, and 5<i>d</i> transition-metal nanoclusters (small nanoparticles) based on a plane-wave-based method within general gradient approximation using first-principles density functional theory calculations. Our results show that the cohesive energies of nanoclusters decrease with decreasing size due to the increased surface-to-volume ratio and quantum confinement effects. A comparison of nanoclusters with different geometries reveals that the cohesive energy decreases as the number of nanocluster layers decreases. Notably, monolayer nanoclusters exhibit the lowest cohesive energies. We also find that the size-dependent cohesive energy trends are different for different transition metals, with some metals exhibiting stronger size effects than others. Our findings provide insights into the fundamental properties of transition-metal nanoclusters and have potential implications for their applications in various fields, such as catalysis, electronics, and biomedical engineering.
ISSN:2079-4991