Phenology Response to Climatic Dynamic across China’s Grasslands from 1985 to 2010

Because the dynamics of phenology in response to climate change may be diverse in different grasslands, quantifying how climate change influences plant growth in different grasslands across northern China should be particularly informative. In this study, we explored the spatiotemporal variation of...

Full description

Bibliographic Details
Main Authors: Jun Wang, Tiancai Zhou, Peihao Peng
Format: Article
Language:English
Published: MDPI AG 2018-07-01
Series:ISPRS International Journal of Geo-Information
Subjects:
Online Access:http://www.mdpi.com/2220-9964/7/8/290
Description
Summary:Because the dynamics of phenology in response to climate change may be diverse in different grasslands, quantifying how climate change influences plant growth in different grasslands across northern China should be particularly informative. In this study, we explored the spatiotemporal variation of the phenology (start of the growing season [SOS], peak of the growing season [POS], end of the growing season [EOS], and length of the growing season [LOS]) across China’s grasslands using a dataset of the GIMMS3g normalized difference vegetation index (NDVI, 1985–2010), and determined the effects of the annual mean temperature (AMT) and annual mean precipitation (AMP) on the significantly changed phenology. We found that the SOS, POS, and EOS advanced at the rates of 0.54 days/year, 0.64 days/year, and 0.65 days/year, respectively; the LOS was shortened at a rate of 0.62 days/year across China’s grasslands. Additionally, the AMT combined with the AMP explained the different rates (ER) for the significantly dynamic SOS in the meadow steppe (R2 = 0.26, p = 0.007, ER = 12.65%) and typical steppe (R2 = 0.28, p = 0.005, ER = 32.52%); the EOS in the alpine steppe (R2 = 0.16, p < 0.05, ER = 6.22%); and the LOS in the alpine (R2 = 0.20, p < 0.05, ER = 6.06%), meadow (R2 = 0.18, p < 0.05, ER = 16.69%) and typical (R2 = 0.18, p < 0.05, ER = 19.58%) steppes. Our findings demonstrated that the plant phenology in different grasslands presented discrepant dynamic patterns, highlighting the fact that climate change has played an important role in the variation of the plant phenology across China’s grasslands, and suggested that the variation and relationships between the climatic factors and phenology in different grasslands should be explored further in the future.
ISSN:2220-9964