Analysis and Improved Behavior of a Single-Phase Transformerless PV Inverter

Transformerless inverters have an important role in the electrical energy market. The high-efficiency and reliable inverter concept is one of the most widely used inverters in single-phase photovoltaic systems because of its high efficiency, low cost, and reduced leakage ground current. However, the...

Full description

Bibliographic Details
Main Authors: Panfilo R. Martinez-Rodriguez, Gerardo Vazquez-Guzman, Gerardo O. Perez-Bustos, Jose M. Sosa-Zuñiga, Dalyndha Aztatzi-Pluma, Adolfo R. Lopez-Nuñez, Christopher J. Rodriguez-Cortes
Format: Article
Language:English
Published: MDPI AG 2023-12-01
Series:Machines
Subjects:
Online Access:https://www.mdpi.com/2075-1702/11/12/1091
Description
Summary:Transformerless inverters have an important role in the electrical energy market. The high-efficiency and reliable inverter concept is one of the most widely used inverters in single-phase photovoltaic systems because of its high efficiency, low cost, and reduced leakage ground current. However, the leakage ground current behavior depends on the power and weather conditions, which can increase the parasitic capacitance value, thus producing an increase in the leakage ground current magnitude. In this paper, it is proposed to add a passive inductive–capacitive output filter to the inverter structure in order to reduce the dependency of the leakage ground current on the system power and weather conditions. The inductive–capacitive output filter is designed in such a way that it can provide a low impedance path for the leakage ground current, different from the ground path. The proposed system was evaluated both through simulations and experimentally in a 1 kW laboratory prototype.
ISSN:2075-1702