Modeling of Extreme Values via Exponential Normalization Compared with Linear and Power Normalization

Several new asymmetric distributions have arisen naturally in the modeling extreme values are uncovered and elucidated. The present paper deals with the extreme value theorem (EVT) under exponential normalization. An estimate of the shape parameter of the asymmetric generalized value distributions t...

Full description

Bibliographic Details
Main Authors: Haroon Mohamed Barakat, Osama Mohareb Khaled, Nourhan Khalil Rakha
Format: Article
Language:English
Published: MDPI AG 2020-11-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/12/11/1876
Description
Summary:Several new asymmetric distributions have arisen naturally in the modeling extreme values are uncovered and elucidated. The present paper deals with the extreme value theorem (EVT) under exponential normalization. An estimate of the shape parameter of the asymmetric generalized value distributions that related to this new extension of the EVT is obtained. Moreover, we develop the mathematical modeling of the extreme values by using this new extension of the EVT. We analyze the extreme values by modeling the occurrence of the exceedances over high thresholds. The natural distributions of such exceedances, new four generalized Pareto families of asymmetric distributions under exponential normalization (GPDEs), are described and their properties revealed. There is an evident symmetry between the new obtained GPDEs and those generalized Pareto distributions arisen from EVT under linear and power normalization. Estimates for the extreme value index of the four GPDEs are obtained. In addition, simulation studies are conducted in order to illustrate and validate the theoretical results. Finally, a comparison study between the different extreme models is done throughout real data sets.
ISSN:2073-8994