Error quantification in multi-parameter mapping facilitates robust estimation and enhanced group level sensitivity

Multi-Parameter Mapping (MPM) is a comprehensive quantitative neuroimaging protocol that enables estimation of four physical parameters (longitudinal and effective transverse relaxation rates R1 and R2*, proton density PD, and magnetization transfer saturation MTsat) that are sensitive to microstruc...

Full description

Bibliographic Details
Main Authors: Siawoosh Mohammadi, Tobias Streubel, Leonie Klock, Luke J. Edwards, Antoine Lutti, Kerrin J. Pine, Sandra Weber, Patrick Scheibe, Gabriel Ziegler, Jürgen Gallinat, Simone Kühn, Martina F. Callaghan, Nikolaus Weiskopf, Karsten Tabelow
Format: Article
Language:English
Published: Elsevier 2022-11-01
Series:NeuroImage
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S1053811922006449
_version_ 1828287323896283136
author Siawoosh Mohammadi
Tobias Streubel
Leonie Klock
Luke J. Edwards
Antoine Lutti
Kerrin J. Pine
Sandra Weber
Patrick Scheibe
Gabriel Ziegler
Jürgen Gallinat
Simone Kühn
Martina F. Callaghan
Nikolaus Weiskopf
Karsten Tabelow
author_facet Siawoosh Mohammadi
Tobias Streubel
Leonie Klock
Luke J. Edwards
Antoine Lutti
Kerrin J. Pine
Sandra Weber
Patrick Scheibe
Gabriel Ziegler
Jürgen Gallinat
Simone Kühn
Martina F. Callaghan
Nikolaus Weiskopf
Karsten Tabelow
author_sort Siawoosh Mohammadi
collection DOAJ
description Multi-Parameter Mapping (MPM) is a comprehensive quantitative neuroimaging protocol that enables estimation of four physical parameters (longitudinal and effective transverse relaxation rates R1 and R2*, proton density PD, and magnetization transfer saturation MTsat) that are sensitive to microstructural tissue properties such as iron and myelin content. Their capability to reveal microstructural brain differences, however, is tightly bound to controlling random noise and artefacts (e.g. caused by head motion) in the signal. Here, we introduced a method to estimate the local error of PD, R1, and MTsat maps that captures both noise and artefacts on a routine basis without requiring additional data. To investigate the method's sensitivity to random noise, we calculated the model-based signal-to-noise ratio (mSNR) and showed in measurements and simulations that it correlated linearly with an experimental raw-image-based SNR map. We found that the mSNR varied with MPM protocols, magnetic field strength (3T vs. 7T) and MPM parameters: it halved from PD to R1 and decreased from PD to MTsat by a factor of 3-4. Exploring the artefact-sensitivity of the error maps, we generated robust MPM parameters using two successive acquisitions of each contrast and the acquisition-specific errors to down-weight erroneous regions. The resulting robust MPM parameters showed reduced variability at the group level as compared to their single-repeat or averaged counterparts. The error and mSNR maps may better inform power-calculations by accounting for local data quality variations across measurements. Code to compute the mSNR maps and robustly combined MPM maps is available in the open-source hMRI toolbox.
first_indexed 2024-04-13T09:45:54Z
format Article
id doaj.art-a413d32925064f17897fdfa222e184e3
institution Directory Open Access Journal
issn 1095-9572
language English
last_indexed 2024-04-13T09:45:54Z
publishDate 2022-11-01
publisher Elsevier
record_format Article
series NeuroImage
spelling doaj.art-a413d32925064f17897fdfa222e184e32022-12-22T02:51:45ZengElsevierNeuroImage1095-95722022-11-01262119529Error quantification in multi-parameter mapping facilitates robust estimation and enhanced group level sensitivitySiawoosh Mohammadi0Tobias Streubel1Leonie Klock2Luke J. Edwards3Antoine Lutti4Kerrin J. Pine5Sandra Weber6Patrick Scheibe7Gabriel Ziegler8Jürgen Gallinat9Simone Kühn10Martina F. Callaghan11Nikolaus Weiskopf12Karsten Tabelow13Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Corresponding author at: Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, GermanyDepartment of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, GermanyDepartment of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, GermanyLaboratory for Research in Neuroimaging, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, SwitzerlandDepartment of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, GermanyDepartment of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, GermanyDepartment of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, GermanyInstitute of Cognitive Neurology and Dementia Research, Otto-von-Guericke-University Magdeburg, Germany; Germany Weierstrass Institute for Applied Analysis and Stochastics, German Center for Neurodegenerative Diseases, Magdeburg, Berlin, GermanyDepartment of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, GermanyDepartment of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Max Planck Institute for Human Development, Lise Meitner Group for Environmental Neuroscience, Berlin, GermanyWellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, UCL, London, UKDepartment of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Felix Bloch Institute for Solid State Physics, Leipzig University, Linnéstraße 5, Leipzig 04103, GermanyWeierstrass Institute for Applied Analysis and Stochastics, Mohrenstrasse 39, Berlin 10117, GermanyMulti-Parameter Mapping (MPM) is a comprehensive quantitative neuroimaging protocol that enables estimation of four physical parameters (longitudinal and effective transverse relaxation rates R1 and R2*, proton density PD, and magnetization transfer saturation MTsat) that are sensitive to microstructural tissue properties such as iron and myelin content. Their capability to reveal microstructural brain differences, however, is tightly bound to controlling random noise and artefacts (e.g. caused by head motion) in the signal. Here, we introduced a method to estimate the local error of PD, R1, and MTsat maps that captures both noise and artefacts on a routine basis without requiring additional data. To investigate the method's sensitivity to random noise, we calculated the model-based signal-to-noise ratio (mSNR) and showed in measurements and simulations that it correlated linearly with an experimental raw-image-based SNR map. We found that the mSNR varied with MPM protocols, magnetic field strength (3T vs. 7T) and MPM parameters: it halved from PD to R1 and decreased from PD to MTsat by a factor of 3-4. Exploring the artefact-sensitivity of the error maps, we generated robust MPM parameters using two successive acquisitions of each contrast and the acquisition-specific errors to down-weight erroneous regions. The resulting robust MPM parameters showed reduced variability at the group level as compared to their single-repeat or averaged counterparts. The error and mSNR maps may better inform power-calculations by accounting for local data quality variations across measurements. Code to compute the mSNR maps and robustly combined MPM maps is available in the open-source hMRI toolbox.http://www.sciencedirect.com/science/article/pii/S1053811922006449Multi-parameter mappingQuantitative MRIError propagationSignal-to-noise ratioRobust estimate
spellingShingle Siawoosh Mohammadi
Tobias Streubel
Leonie Klock
Luke J. Edwards
Antoine Lutti
Kerrin J. Pine
Sandra Weber
Patrick Scheibe
Gabriel Ziegler
Jürgen Gallinat
Simone Kühn
Martina F. Callaghan
Nikolaus Weiskopf
Karsten Tabelow
Error quantification in multi-parameter mapping facilitates robust estimation and enhanced group level sensitivity
NeuroImage
Multi-parameter mapping
Quantitative MRI
Error propagation
Signal-to-noise ratio
Robust estimate
title Error quantification in multi-parameter mapping facilitates robust estimation and enhanced group level sensitivity
title_full Error quantification in multi-parameter mapping facilitates robust estimation and enhanced group level sensitivity
title_fullStr Error quantification in multi-parameter mapping facilitates robust estimation and enhanced group level sensitivity
title_full_unstemmed Error quantification in multi-parameter mapping facilitates robust estimation and enhanced group level sensitivity
title_short Error quantification in multi-parameter mapping facilitates robust estimation and enhanced group level sensitivity
title_sort error quantification in multi parameter mapping facilitates robust estimation and enhanced group level sensitivity
topic Multi-parameter mapping
Quantitative MRI
Error propagation
Signal-to-noise ratio
Robust estimate
url http://www.sciencedirect.com/science/article/pii/S1053811922006449
work_keys_str_mv AT siawooshmohammadi errorquantificationinmultiparametermappingfacilitatesrobustestimationandenhancedgrouplevelsensitivity
AT tobiasstreubel errorquantificationinmultiparametermappingfacilitatesrobustestimationandenhancedgrouplevelsensitivity
AT leonieklock errorquantificationinmultiparametermappingfacilitatesrobustestimationandenhancedgrouplevelsensitivity
AT lukejedwards errorquantificationinmultiparametermappingfacilitatesrobustestimationandenhancedgrouplevelsensitivity
AT antoinelutti errorquantificationinmultiparametermappingfacilitatesrobustestimationandenhancedgrouplevelsensitivity
AT kerrinjpine errorquantificationinmultiparametermappingfacilitatesrobustestimationandenhancedgrouplevelsensitivity
AT sandraweber errorquantificationinmultiparametermappingfacilitatesrobustestimationandenhancedgrouplevelsensitivity
AT patrickscheibe errorquantificationinmultiparametermappingfacilitatesrobustestimationandenhancedgrouplevelsensitivity
AT gabrielziegler errorquantificationinmultiparametermappingfacilitatesrobustestimationandenhancedgrouplevelsensitivity
AT jurgengallinat errorquantificationinmultiparametermappingfacilitatesrobustestimationandenhancedgrouplevelsensitivity
AT simonekuhn errorquantificationinmultiparametermappingfacilitatesrobustestimationandenhancedgrouplevelsensitivity
AT martinafcallaghan errorquantificationinmultiparametermappingfacilitatesrobustestimationandenhancedgrouplevelsensitivity
AT nikolausweiskopf errorquantificationinmultiparametermappingfacilitatesrobustestimationandenhancedgrouplevelsensitivity
AT karstentabelow errorquantificationinmultiparametermappingfacilitatesrobustestimationandenhancedgrouplevelsensitivity