Removal of Algae and Algal Toxins from a Drinking Water Source Using a Two-Stage Polymeric Ultrafiltration Membrane Process

The release of algal toxins in algae-containing water sources poses a serious threat to drinking water safety and human health. The conventional water treatment processes of water plants have a limited ability to remove algae and algal toxins, especially algal toxins with a molecular weight (MW) of...

Full description

Bibliographic Details
Main Authors: Fan Zhang, Jianglei Xiong, Cong Zhang, Xue Wu, Yuming Tian
Format: Article
Language:English
Published: MDPI AG 2023-11-01
Series:Polymers
Subjects:
Online Access:https://www.mdpi.com/2073-4360/15/23/4495
Description
Summary:The release of algal toxins in algae-containing water sources poses a serious threat to drinking water safety and human health. The conventional water treatment processes of water plants have a limited ability to remove algae and algal toxins, especially algal toxins with a molecular weight (MW) of less than 1000 Da. To eliminate algal pollution from a water source, a two-stage ultrafiltration (UF) process with a large polysulfone hollow fiber membrane with a MW cut-off of 200 kDa and a small aromatic polyamide roll membrane with a MW cut-off of 1 kDa were applied after a traditional sand filter in a water treatment plant. UF operation conditions, including the operating time, pressure, and membrane flux, were investigated. With an operating pressure of 0.05–0.08 MPa, the polysulfone hollow fiber membrane removed algae effectively, as the influent algal cell concentration ranged from 1–30 cells/mL but exhibited a limited removal of algal toxins. With an operating pressure of 0.3–0.4 MPa, the elimination of microcystins (MCs) reached 96.3% with the aromatic polyamide roll membrane. The operating pressure, membrane flux, and operating time were selected as the experimental factors, and the effects on the UF efficiency to remove algal toxins and biodegradable dissolved organic carbon were investigated by the response surface methodology. The model showed that the order of influence on the membrane operating efficiency was operating pressure > membrane flux > running time. The optimal UF operating conditions were an operating pressure of 0.3 MPa, a membrane flux of 17.5 L/(m<sup>2</sup>·h), and a running time of 80 min.
ISSN:2073-4360