Single-cell Transcriptome Study as Big Data

The rapid growth of single-cell RNA-seq studies (scRNA-seq) demands efficient data storage, processing, and analysis. Big-data technology provides a framework that facilitates the comprehensive discovery of biological signals from inter-institutional scRNA-seq datasets. The strategies to solve the s...

Full description

Bibliographic Details
Main Authors: Pingjian Yu, Wei Lin
Format: Article
Language:English
Published: Elsevier 2016-02-01
Series:Genomics, Proteomics & Bioinformatics
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S1672022916000437
Description
Summary:The rapid growth of single-cell RNA-seq studies (scRNA-seq) demands efficient data storage, processing, and analysis. Big-data technology provides a framework that facilitates the comprehensive discovery of biological signals from inter-institutional scRNA-seq datasets. The strategies to solve the stochastic and heterogeneous single-cell transcriptome signal are discussed in this article. After extensively reviewing the available big-data applications of next-generation sequencing (NGS)-based studies, we propose a workflow that accounts for the unique characteristics of scRNA-seq data and primary objectives of single-cell studies.
ISSN:1672-0229