On the strong metric dimension of the strong products of graphs

Let G be a connected graph. A vertex w ∈ V.G/ strongly resolves two vertices u,v ∈ V.G/ if there exists some shortest u-w path containing v or some shortest v-w path containing u. A set S of vertices is a strong resolving set for G if every pair of vertices of G is strongly resolved by some vertex o...

Full description

Bibliographic Details
Main Authors: Kuziak Dorota, Yero Ismael G., Rodríguez-Velázquez Juan A.
Format: Article
Language:English
Published: De Gruyter 2015-01-01
Series:Open Mathematics
Subjects:
Online Access:https://doi.org/10.1515/math-2015-0007
_version_ 1831568569809240064
author Kuziak Dorota
Yero Ismael G.
Rodríguez-Velázquez Juan A.
author_facet Kuziak Dorota
Yero Ismael G.
Rodríguez-Velázquez Juan A.
author_sort Kuziak Dorota
collection DOAJ
description Let G be a connected graph. A vertex w ∈ V.G/ strongly resolves two vertices u,v ∈ V.G/ if there exists some shortest u-w path containing v or some shortest v-w path containing u. A set S of vertices is a strong resolving set for G if every pair of vertices of G is strongly resolved by some vertex of S. The smallest cardinality of a strong resolving set for G is called the strong metric dimension of G. It is well known that the problem of computing this invariant is NP-hard. In this paper we study the problem of finding exact values or sharp bounds for the strong metric dimension of strong product graphs and express these in terms of invariants of the factor graphs.
first_indexed 2024-12-17T12:17:58Z
format Article
id doaj.art-a421a15e367342918e615af52bfac4f3
institution Directory Open Access Journal
issn 2391-5455
language English
last_indexed 2024-12-17T12:17:58Z
publishDate 2015-01-01
publisher De Gruyter
record_format Article
series Open Mathematics
spelling doaj.art-a421a15e367342918e615af52bfac4f32022-12-21T21:49:06ZengDe GruyterOpen Mathematics2391-54552015-01-0113110.1515/math-2015-0007math-2015-0007On the strong metric dimension of the strong products of graphsKuziak Dorota0Yero Ismael G.1Rodríguez-Velázquez Juan A.2Departament d’Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, SpainDepartamento de Matemáticas, Escuela Politécnica Superior de Algeciras, Universidad de Cádiz, Av. Ramón Puyol s/n, 11202 Algeciras, SpainDepartament d’Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, SpainLet G be a connected graph. A vertex w ∈ V.G/ strongly resolves two vertices u,v ∈ V.G/ if there exists some shortest u-w path containing v or some shortest v-w path containing u. A set S of vertices is a strong resolving set for G if every pair of vertices of G is strongly resolved by some vertex of S. The smallest cardinality of a strong resolving set for G is called the strong metric dimension of G. It is well known that the problem of computing this invariant is NP-hard. In this paper we study the problem of finding exact values or sharp bounds for the strong metric dimension of strong product graphs and express these in terms of invariants of the factor graphs.https://doi.org/10.1515/math-2015-0007strong metric dimensionstrong metric basisstrong resolving setstrong product graphs
spellingShingle Kuziak Dorota
Yero Ismael G.
Rodríguez-Velázquez Juan A.
On the strong metric dimension of the strong products of graphs
Open Mathematics
strong metric dimension
strong metric basis
strong resolving set
strong product graphs
title On the strong metric dimension of the strong products of graphs
title_full On the strong metric dimension of the strong products of graphs
title_fullStr On the strong metric dimension of the strong products of graphs
title_full_unstemmed On the strong metric dimension of the strong products of graphs
title_short On the strong metric dimension of the strong products of graphs
title_sort on the strong metric dimension of the strong products of graphs
topic strong metric dimension
strong metric basis
strong resolving set
strong product graphs
url https://doi.org/10.1515/math-2015-0007
work_keys_str_mv AT kuziakdorota onthestrongmetricdimensionofthestrongproductsofgraphs
AT yeroismaelg onthestrongmetricdimensionofthestrongproductsofgraphs
AT rodriguezvelazquezjuana onthestrongmetricdimensionofthestrongproductsofgraphs