Compilation of Load Spectrum for 5MN Metal Extruder Based on Long Short-Term Memory Network

As an important condition for fatigue analysis and life prediction, load spectrum is widely used in various engineering fields. The extrapolation of load samples is an important step in compiling load spectrum. It is of great significance to select an appropriate load extrapolation method. This pape...

Full description

Bibliographic Details
Main Authors: Xiaole Cheng, Te Han, Peilin Yang, Xugang Zhang
Format: Article
Language:English
Published: MDPI AG 2021-10-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/11/20/9708
Description
Summary:As an important condition for fatigue analysis and life prediction, load spectrum is widely used in various engineering fields. The extrapolation of load samples is an important step in compiling load spectrum. It is of great significance to select an appropriate load extrapolation method. This paper proposes a load extrapolation method based on long short-term memory (LSTM) network, introduces the basic principle of the extrapolation method, and applies the method to the data set collected under the working state of 5MN metal extruder. The comparison between the extrapolated load data and the actual load shows that the trend of the extrapolated load data is basically consistent with the original tendency. In addition, this method is compared with the rain flow extrapolation method based on statistical distribution. Through the comparison of the short-term load spectrum compiled by the two extrapolation methods, it is found that the load spectrum extrapolation method based on LSTM network can better realize load prediction and optimize the compilation of load spectrum.
ISSN:2076-3417