Enhanced personalized learning exercise question recommendation model based on knowledge tracing
Personalized exercise question recommendation is a crucial aspect of smart education used to customize educational exercises and questions to individual students' distinct abilities and learning progress. Integrating cognitive diagnosis with deep learning has shown promising results in personal...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Universitas Ahmad Dahlan
2024-02-01
|
Series: | IJAIN (International Journal of Advances in Intelligent Informatics) |
Subjects: | |
Online Access: | http://ijain.org/index.php/IJAIN/article/view/1136 |
_version_ | 1827323344284811264 |
---|---|
author | Pei Pei Rodolfo C. Raga Jr. Mideth Abisado |
author_facet | Pei Pei Rodolfo C. Raga Jr. Mideth Abisado |
author_sort | Pei Pei |
collection | DOAJ |
description | Personalized exercise question recommendation is a crucial aspect of smart education used to customize educational exercises and questions to individual students' distinct abilities and learning progress. Integrating cognitive diagnosis with deep learning has shown promising results in personalized exercise recommendations. However, the black-box nature of the deep learning model hinders their interpretability. This makes it challenging for educators and students to understand the reasons behind the model's predictions for the next problem, and this limits their opportunity to take an active role in improving the learning process. To address this limitation, this article presents a novel personalized exercise question recommendation model based on knowledge tracing. The approach incorporates graph convolutional neural networks to model the student's abilities, thus enhancing the interpretability of the model. By employing Bidirectional gate recurrent unit (Bi-GRU), the model effectively traces fluctuations in students' abilities over time and predicts their responses to exercise questions. Experimental results demonstrate the effectiveness of this model, achieving an accuracy of 90.8% and 92.6% on ASSISTment 2009 and ASSISTment 2017 datasets, containing 4218 and 1709 student records, respectively. Moreover, the experiment was also conducted to validate the model's exercise difficulty setting. Results indicate an acceptable level of effectiveness in generating appropriate difficulty-level recommendations for individual students. The proposed model contributes to advancing personalized exercise recommendations by offering valuable insights that can lead to more efficient and effective student learning experiences. |
first_indexed | 2024-04-25T01:43:26Z |
format | Article |
id | doaj.art-a4378a5c4a1e4f219988ef098e59dcaa |
institution | Directory Open Access Journal |
issn | 2442-6571 2548-3161 |
language | English |
last_indexed | 2024-04-25T01:43:26Z |
publishDate | 2024-02-01 |
publisher | Universitas Ahmad Dahlan |
record_format | Article |
series | IJAIN (International Journal of Advances in Intelligent Informatics) |
spelling | doaj.art-a4378a5c4a1e4f219988ef098e59dcaa2024-03-08T03:14:05ZengUniversitas Ahmad DahlanIJAIN (International Journal of Advances in Intelligent Informatics)2442-65712548-31612024-02-01101132610.26555/ijain.v10i1.1136263Enhanced personalized learning exercise question recommendation model based on knowledge tracingPei Pei0Rodolfo C. Raga Jr.1Mideth Abisado2National University Manila Philippines, and Anhui Sanlian UniversityNational University, ManilaNational University, ManilaPersonalized exercise question recommendation is a crucial aspect of smart education used to customize educational exercises and questions to individual students' distinct abilities and learning progress. Integrating cognitive diagnosis with deep learning has shown promising results in personalized exercise recommendations. However, the black-box nature of the deep learning model hinders their interpretability. This makes it challenging for educators and students to understand the reasons behind the model's predictions for the next problem, and this limits their opportunity to take an active role in improving the learning process. To address this limitation, this article presents a novel personalized exercise question recommendation model based on knowledge tracing. The approach incorporates graph convolutional neural networks to model the student's abilities, thus enhancing the interpretability of the model. By employing Bidirectional gate recurrent unit (Bi-GRU), the model effectively traces fluctuations in students' abilities over time and predicts their responses to exercise questions. Experimental results demonstrate the effectiveness of this model, achieving an accuracy of 90.8% and 92.6% on ASSISTment 2009 and ASSISTment 2017 datasets, containing 4218 and 1709 student records, respectively. Moreover, the experiment was also conducted to validate the model's exercise difficulty setting. Results indicate an acceptable level of effectiveness in generating appropriate difficulty-level recommendations for individual students. The proposed model contributes to advancing personalized exercise recommendations by offering valuable insights that can lead to more efficient and effective student learning experiences.http://ijain.org/index.php/IJAIN/article/view/1136knowledge tracingpersonalized learning recommendationgraph neural networkcognitive diagnosis |
spellingShingle | Pei Pei Rodolfo C. Raga Jr. Mideth Abisado Enhanced personalized learning exercise question recommendation model based on knowledge tracing IJAIN (International Journal of Advances in Intelligent Informatics) knowledge tracing personalized learning recommendation graph neural network cognitive diagnosis |
title | Enhanced personalized learning exercise question recommendation model based on knowledge tracing |
title_full | Enhanced personalized learning exercise question recommendation model based on knowledge tracing |
title_fullStr | Enhanced personalized learning exercise question recommendation model based on knowledge tracing |
title_full_unstemmed | Enhanced personalized learning exercise question recommendation model based on knowledge tracing |
title_short | Enhanced personalized learning exercise question recommendation model based on knowledge tracing |
title_sort | enhanced personalized learning exercise question recommendation model based on knowledge tracing |
topic | knowledge tracing personalized learning recommendation graph neural network cognitive diagnosis |
url | http://ijain.org/index.php/IJAIN/article/view/1136 |
work_keys_str_mv | AT peipei enhancedpersonalizedlearningexercisequestionrecommendationmodelbasedonknowledgetracing AT rodolfocragajr enhancedpersonalizedlearningexercisequestionrecommendationmodelbasedonknowledgetracing AT midethabisado enhancedpersonalizedlearningexercisequestionrecommendationmodelbasedonknowledgetracing |