Matrix Analysis for Continuous-Time Markov Chains

Continuous-time Markov chains have transition matrices that vary continuously in time. Classical theory of nonnegative matrices, M-matrices and matrix exponentials is used in the literature to study their dynamics, probability distributions and other stochastic properties. For the benefit of Perron-...

Full description

Bibliographic Details
Main Authors: Le Hung V., Tsatsomeros M. J.
Format: Article
Language:English
Published: De Gruyter 2021-12-01
Series:Special Matrices
Subjects:
Online Access:https://doi.org/10.1515/spma-2021-0157
Description
Summary:Continuous-time Markov chains have transition matrices that vary continuously in time. Classical theory of nonnegative matrices, M-matrices and matrix exponentials is used in the literature to study their dynamics, probability distributions and other stochastic properties. For the benefit of Perron-Frobenius cognoscentes, this theory is surveyed and further adapted to study continuous-time Markov chains on finite state spaces.
ISSN:2300-7451