A direct approach to estimating false discovery rates conditional on covariates
Modern scientific studies from many diverse areas of research abound with multiple hypothesis testing concerns. The false discovery rate (FDR) is one of the most commonly used approaches for measuring and controlling error rates when performing multiple tests. Adaptive FDRs rely on an estimate of th...
主要な著者: | Simina M. Boca, Jeffrey T. Leek |
---|---|
フォーマット: | 論文 |
言語: | English |
出版事項: |
PeerJ Inc.
2018-12-01
|
シリーズ: | PeerJ |
主題: | |
オンライン・アクセス: | https://peerj.com/articles/6035.pdf |
類似資料
-
Using controls to limit false discovery in the era of big data
著者:: Matthew M. Parks, 等
出版事項: (2018-09-01) -
A new estimation of protein-level false discovery rate
著者:: Guanying Wu, 等
出版事項: (2018-08-01) -
False Discovery Rate (FDR) and Familywise Error Rate (FER) Rules for Model Selection in Signal Processing Applications
著者:: Petre Stoica, 等
出版事項: (2022-01-01) -
Improving the Output of Signaling Pathway Impact Analysis
著者:: Mohammad Ohid Ullah
出版事項: (2013-04-01) -
Exploring Lead loci shared between schizophrenia and Cardiometabolic traits
著者:: Qian He, 等
出版事項: (2022-08-01)