Summary: | Abstract Elevated serum cytokine production in COVID-19 patients is associated with disease progression and severity. However, the stimuli that initiate cytokine production in patients remain to be fully revealed. Virus-infected cells release virus-associated exosomes, extracellular vesicles of endocytic origin, into the blood to deliver viral cargoes able to regulate immune responses. Here, we report that plasma exosomes of COVID-19 patients contain SARS-CoV-2 double stranded RNA (dsRNA) and stimulate robust production of interleukin-6 (IL-6), IL-8, tumor necrosis factor-α (TNF-α), and other inflammatory cytokines and chemokines by human peripheral mononuclear cells. Exosome depletion abolished these stimulated responses. COVID-19 plasma exosomes induced proinflammatory responses in CD4+ T cells, CD8+ T cells, and CD14+ monocytes but not significantly in regulatory T cells, Th17 T cells, or central memory T cells. COVID-19 plasma exosomes protect the SARS-CoV-2 dsRNA cargo from RNase and deliver the dsRNA into recipient cells. These exosomes significantly increase expression of endosomal toll-like receptor 3 (TLR3), TLR7, TLR8, and TLR9 in peripheral T cells and monocytes. A pharmacological inhibitor of TLR3 considerably reduced cytokine and chemokine production by CD4+ and CD8+ T cells but not by CD14+ monocytes, highlighting divergent signaling pathways of immune cells in response to COVID-19 plasma exosomes. Our results identify a novel model of intercellular crosstalk following SARS-CoV-2 infection that evoke immune responses positioned to contribute to elevated cytokine production associated with COVID-19 progression, severity, and long-haul symptoms.
|