Summary: | Delay games are two-player games of infinite duration in which one player may
delay her moves to obtain a lookahead on her opponent's moves. For
$\omega$-regular winning conditions it is known that such games can be solved
in doubly-exponential time and that doubly-exponential lookahead is sufficient.
We improve upon both results by giving an exponential time algorithm and an
exponential upper bound on the necessary lookahead. This is complemented by
showing EXPTIME-hardness of the solution problem and tight exponential lower
bounds on the lookahead. Both lower bounds already hold for safety conditions.
Furthermore, solving delay games with reachability conditions is shown to be
PSPACE-complete.
This is a corrected version of the paper https://arxiv.org/abs/1412.3701v4
published originally on August 26, 2016.
|