Millimeter-Wave ME-Dipole Array Antenna Decoupling Using a Novel Metasurface Structure
A novel customized <inline-formula> <tex-math notation="LaTeX">$\pi $ </tex-math></inline-formula>-shaped split-ring resonator metasurface arranged in two configurations is presented to decouple <inline-formula> <tex-math notation="LaTeX">$1\ti...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2023-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/10305151/ |
_version_ | 1797448893704699904 |
---|---|
author | Oludayo Sokunbi Ahmed A. Kishk |
author_facet | Oludayo Sokunbi Ahmed A. Kishk |
author_sort | Oludayo Sokunbi |
collection | DOAJ |
description | A novel customized <inline-formula> <tex-math notation="LaTeX">$\pi $ </tex-math></inline-formula>-shaped split-ring resonator metasurface arranged in two configurations is presented to decouple <inline-formula> <tex-math notation="LaTeX">$1\times 2$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$1\times 4$ </tex-math></inline-formula> Millimeter-Wave (MMW) Magneto-Electric (ME) Dipole in the H-Plane with 1.6 mm (<inline-formula> <tex-math notation="LaTeX">$0.32\lambda $ </tex-math></inline-formula> at 60 GHz) inter-element spacing. The metamaterial unit cell is first designed to inhibit the propagation of coupled surface waves within the bandwidth of interest. A <inline-formula> <tex-math notation="LaTeX">$5\times 2$ </tex-math></inline-formula> arrangement of this unit cell is carefully positioned on the top and bottom of the superstrate with 1 mm spacing (<inline-formula> <tex-math notation="LaTeX">$0.2\lambda $ </tex-math></inline-formula> at 60 GHz) between the antenna and the superstrate. In the <inline-formula> <tex-math notation="LaTeX">$1\times 2$ </tex-math></inline-formula> array, a maximum measured mutual coupling reduction of 53 dB is observed within the 52–66 GHz bandwidth (23.7%). To further demonstrate the uniqueness of the metasurface, an <inline-formula> <tex-math notation="LaTeX">$11\times 2$ </tex-math></inline-formula> configuration of this unit cell is arranged as a superstrate for the <inline-formula> <tex-math notation="LaTeX">$1\times 4$ </tex-math></inline-formula> ME-dipoles. A maximum measured mutual coupling reduction of 40 dB is achieved without a considerable effect on the radiation characteristics. Parametric analysis is performed to confirm the uniqueness of this new decoupling structure. The proposed antenna exhibits measured high total efficiency (>89%), high gain (>8 dB), low envelope correlation coefficient (<inline-formula> <tex-math notation="LaTeX">$ < 0.0003$ </tex-math></inline-formula>), and very good radiation characteristics throughout the entire bandwidth. The fabricated prototype antenna is measured to validate the simulation results. The proposed antenna is a good recommendation for V-band millimeter-wave MIMO applications like radar research. |
first_indexed | 2024-03-09T14:17:01Z |
format | Article |
id | doaj.art-a4601d30ec684eb4a769391b6c09da7e |
institution | Directory Open Access Journal |
issn | 2169-3536 |
language | English |
last_indexed | 2024-03-09T14:17:01Z |
publishDate | 2023-01-01 |
publisher | IEEE |
record_format | Article |
series | IEEE Access |
spelling | doaj.art-a4601d30ec684eb4a769391b6c09da7e2023-11-29T00:01:37ZengIEEEIEEE Access2169-35362023-01-011112985412986510.1109/ACCESS.2023.332975010305151Millimeter-Wave ME-Dipole Array Antenna Decoupling Using a Novel Metasurface StructureOludayo Sokunbi0https://orcid.org/0000-0002-8947-7678Ahmed A. Kishk1Department of Electrical and Computer Engineering, Concordia University, Montreal, CanadaDepartment of Electrical and Computer Engineering, Concordia University, Montreal, CanadaA novel customized <inline-formula> <tex-math notation="LaTeX">$\pi $ </tex-math></inline-formula>-shaped split-ring resonator metasurface arranged in two configurations is presented to decouple <inline-formula> <tex-math notation="LaTeX">$1\times 2$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$1\times 4$ </tex-math></inline-formula> Millimeter-Wave (MMW) Magneto-Electric (ME) Dipole in the H-Plane with 1.6 mm (<inline-formula> <tex-math notation="LaTeX">$0.32\lambda $ </tex-math></inline-formula> at 60 GHz) inter-element spacing. The metamaterial unit cell is first designed to inhibit the propagation of coupled surface waves within the bandwidth of interest. A <inline-formula> <tex-math notation="LaTeX">$5\times 2$ </tex-math></inline-formula> arrangement of this unit cell is carefully positioned on the top and bottom of the superstrate with 1 mm spacing (<inline-formula> <tex-math notation="LaTeX">$0.2\lambda $ </tex-math></inline-formula> at 60 GHz) between the antenna and the superstrate. In the <inline-formula> <tex-math notation="LaTeX">$1\times 2$ </tex-math></inline-formula> array, a maximum measured mutual coupling reduction of 53 dB is observed within the 52–66 GHz bandwidth (23.7%). To further demonstrate the uniqueness of the metasurface, an <inline-formula> <tex-math notation="LaTeX">$11\times 2$ </tex-math></inline-formula> configuration of this unit cell is arranged as a superstrate for the <inline-formula> <tex-math notation="LaTeX">$1\times 4$ </tex-math></inline-formula> ME-dipoles. A maximum measured mutual coupling reduction of 40 dB is achieved without a considerable effect on the radiation characteristics. Parametric analysis is performed to confirm the uniqueness of this new decoupling structure. The proposed antenna exhibits measured high total efficiency (>89%), high gain (>8 dB), low envelope correlation coefficient (<inline-formula> <tex-math notation="LaTeX">$ < 0.0003$ </tex-math></inline-formula>), and very good radiation characteristics throughout the entire bandwidth. The fabricated prototype antenna is measured to validate the simulation results. The proposed antenna is a good recommendation for V-band millimeter-wave MIMO applications like radar research.https://ieeexplore.ieee.org/document/10305151/Millimeter-wave magneto-electric dipolemultiple-input-multiple-output (MIMO)split ring resonator |
spellingShingle | Oludayo Sokunbi Ahmed A. Kishk Millimeter-Wave ME-Dipole Array Antenna Decoupling Using a Novel Metasurface Structure IEEE Access Millimeter-wave magneto-electric dipole multiple-input-multiple-output (MIMO) split ring resonator |
title | Millimeter-Wave ME-Dipole Array Antenna Decoupling Using a Novel Metasurface Structure |
title_full | Millimeter-Wave ME-Dipole Array Antenna Decoupling Using a Novel Metasurface Structure |
title_fullStr | Millimeter-Wave ME-Dipole Array Antenna Decoupling Using a Novel Metasurface Structure |
title_full_unstemmed | Millimeter-Wave ME-Dipole Array Antenna Decoupling Using a Novel Metasurface Structure |
title_short | Millimeter-Wave ME-Dipole Array Antenna Decoupling Using a Novel Metasurface Structure |
title_sort | millimeter wave me dipole array antenna decoupling using a novel metasurface structure |
topic | Millimeter-wave magneto-electric dipole multiple-input-multiple-output (MIMO) split ring resonator |
url | https://ieeexplore.ieee.org/document/10305151/ |
work_keys_str_mv | AT oludayosokunbi millimeterwavemedipolearrayantennadecouplingusinganovelmetasurfacestructure AT ahmedakishk millimeterwavemedipolearrayantennadecouplingusinganovelmetasurfacestructure |