Millimeter-Wave ME-Dipole Array Antenna Decoupling Using a Novel Metasurface Structure

A novel customized <inline-formula> <tex-math notation="LaTeX">$\pi $ </tex-math></inline-formula>-shaped split-ring resonator metasurface arranged in two configurations is presented to decouple <inline-formula> <tex-math notation="LaTeX">$1\ti...

Full description

Bibliographic Details
Main Authors: Oludayo Sokunbi, Ahmed A. Kishk
Format: Article
Language:English
Published: IEEE 2023-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/10305151/
_version_ 1797448893704699904
author Oludayo Sokunbi
Ahmed A. Kishk
author_facet Oludayo Sokunbi
Ahmed A. Kishk
author_sort Oludayo Sokunbi
collection DOAJ
description A novel customized <inline-formula> <tex-math notation="LaTeX">$\pi $ </tex-math></inline-formula>-shaped split-ring resonator metasurface arranged in two configurations is presented to decouple <inline-formula> <tex-math notation="LaTeX">$1\times 2$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$1\times 4$ </tex-math></inline-formula> Millimeter-Wave (MMW) Magneto-Electric (ME) Dipole in the H-Plane with 1.6 mm (<inline-formula> <tex-math notation="LaTeX">$0.32\lambda $ </tex-math></inline-formula> at 60 GHz) inter-element spacing. The metamaterial unit cell is first designed to inhibit the propagation of coupled surface waves within the bandwidth of interest. A <inline-formula> <tex-math notation="LaTeX">$5\times 2$ </tex-math></inline-formula> arrangement of this unit cell is carefully positioned on the top and bottom of the superstrate with 1 mm spacing (<inline-formula> <tex-math notation="LaTeX">$0.2\lambda $ </tex-math></inline-formula> at 60 GHz) between the antenna and the superstrate. In the <inline-formula> <tex-math notation="LaTeX">$1\times 2$ </tex-math></inline-formula> array, a maximum measured mutual coupling reduction of 53 dB is observed within the 52&#x2013;66 GHz bandwidth (23.7&#x0025;). To further demonstrate the uniqueness of the metasurface, an <inline-formula> <tex-math notation="LaTeX">$11\times 2$ </tex-math></inline-formula> configuration of this unit cell is arranged as a superstrate for the <inline-formula> <tex-math notation="LaTeX">$1\times 4$ </tex-math></inline-formula> ME-dipoles. A maximum measured mutual coupling reduction of 40 dB is achieved without a considerable effect on the radiation characteristics. Parametric analysis is performed to confirm the uniqueness of this new decoupling structure. The proposed antenna exhibits measured high total efficiency (&#x003E;89&#x0025;), high gain (&#x003E;8 dB), low envelope correlation coefficient (<inline-formula> <tex-math notation="LaTeX">$ &lt; 0.0003$ </tex-math></inline-formula>), and very good radiation characteristics throughout the entire bandwidth. The fabricated prototype antenna is measured to validate the simulation results. The proposed antenna is a good recommendation for V-band millimeter-wave MIMO applications like radar research.
first_indexed 2024-03-09T14:17:01Z
format Article
id doaj.art-a4601d30ec684eb4a769391b6c09da7e
institution Directory Open Access Journal
issn 2169-3536
language English
last_indexed 2024-03-09T14:17:01Z
publishDate 2023-01-01
publisher IEEE
record_format Article
series IEEE Access
spelling doaj.art-a4601d30ec684eb4a769391b6c09da7e2023-11-29T00:01:37ZengIEEEIEEE Access2169-35362023-01-011112985412986510.1109/ACCESS.2023.332975010305151Millimeter-Wave ME-Dipole Array Antenna Decoupling Using a Novel Metasurface StructureOludayo Sokunbi0https://orcid.org/0000-0002-8947-7678Ahmed A. Kishk1Department of Electrical and Computer Engineering, Concordia University, Montreal, CanadaDepartment of Electrical and Computer Engineering, Concordia University, Montreal, CanadaA novel customized <inline-formula> <tex-math notation="LaTeX">$\pi $ </tex-math></inline-formula>-shaped split-ring resonator metasurface arranged in two configurations is presented to decouple <inline-formula> <tex-math notation="LaTeX">$1\times 2$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$1\times 4$ </tex-math></inline-formula> Millimeter-Wave (MMW) Magneto-Electric (ME) Dipole in the H-Plane with 1.6 mm (<inline-formula> <tex-math notation="LaTeX">$0.32\lambda $ </tex-math></inline-formula> at 60 GHz) inter-element spacing. The metamaterial unit cell is first designed to inhibit the propagation of coupled surface waves within the bandwidth of interest. A <inline-formula> <tex-math notation="LaTeX">$5\times 2$ </tex-math></inline-formula> arrangement of this unit cell is carefully positioned on the top and bottom of the superstrate with 1 mm spacing (<inline-formula> <tex-math notation="LaTeX">$0.2\lambda $ </tex-math></inline-formula> at 60 GHz) between the antenna and the superstrate. In the <inline-formula> <tex-math notation="LaTeX">$1\times 2$ </tex-math></inline-formula> array, a maximum measured mutual coupling reduction of 53 dB is observed within the 52&#x2013;66 GHz bandwidth (23.7&#x0025;). To further demonstrate the uniqueness of the metasurface, an <inline-formula> <tex-math notation="LaTeX">$11\times 2$ </tex-math></inline-formula> configuration of this unit cell is arranged as a superstrate for the <inline-formula> <tex-math notation="LaTeX">$1\times 4$ </tex-math></inline-formula> ME-dipoles. A maximum measured mutual coupling reduction of 40 dB is achieved without a considerable effect on the radiation characteristics. Parametric analysis is performed to confirm the uniqueness of this new decoupling structure. The proposed antenna exhibits measured high total efficiency (&#x003E;89&#x0025;), high gain (&#x003E;8 dB), low envelope correlation coefficient (<inline-formula> <tex-math notation="LaTeX">$ &lt; 0.0003$ </tex-math></inline-formula>), and very good radiation characteristics throughout the entire bandwidth. The fabricated prototype antenna is measured to validate the simulation results. The proposed antenna is a good recommendation for V-band millimeter-wave MIMO applications like radar research.https://ieeexplore.ieee.org/document/10305151/Millimeter-wave magneto-electric dipolemultiple-input-multiple-output (MIMO)split ring resonator
spellingShingle Oludayo Sokunbi
Ahmed A. Kishk
Millimeter-Wave ME-Dipole Array Antenna Decoupling Using a Novel Metasurface Structure
IEEE Access
Millimeter-wave magneto-electric dipole
multiple-input-multiple-output (MIMO)
split ring resonator
title Millimeter-Wave ME-Dipole Array Antenna Decoupling Using a Novel Metasurface Structure
title_full Millimeter-Wave ME-Dipole Array Antenna Decoupling Using a Novel Metasurface Structure
title_fullStr Millimeter-Wave ME-Dipole Array Antenna Decoupling Using a Novel Metasurface Structure
title_full_unstemmed Millimeter-Wave ME-Dipole Array Antenna Decoupling Using a Novel Metasurface Structure
title_short Millimeter-Wave ME-Dipole Array Antenna Decoupling Using a Novel Metasurface Structure
title_sort millimeter wave me dipole array antenna decoupling using a novel metasurface structure
topic Millimeter-wave magneto-electric dipole
multiple-input-multiple-output (MIMO)
split ring resonator
url https://ieeexplore.ieee.org/document/10305151/
work_keys_str_mv AT oludayosokunbi millimeterwavemedipolearrayantennadecouplingusinganovelmetasurfacestructure
AT ahmedakishk millimeterwavemedipolearrayantennadecouplingusinganovelmetasurfacestructure