The role of plastic strains on variant selection in ausformed bainitic microstructures studied by finite elements and crystal plasticity simulations

The mechanisms driving variant selection phenomena in ausformed bainitic microstructures are not fully controlled yet. Previous results are not congruent among them, as they cannot be explained by the same rule. In this work, we aimed to understand the mechanisms governing variant selection in a med...

Full description

Bibliographic Details
Main Authors: Adriana Eres-Castellanos, Javier Hidalgo, Lucia Morales-Rivas, Francisca G. Caballero, Carlos Garcia-Mateo
Format: Article
Language:English
Published: Elsevier 2021-07-01
Series:Journal of Materials Research and Technology
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S223878542100510X
Description
Summary:The mechanisms driving variant selection phenomena in ausformed bainitic microstructures are not fully controlled yet. Previous results are not congruent among them, as they cannot be explained by the same rule. In this work, we aimed to understand the mechanisms governing variant selection in a medium carbon-high silicon steel subjected to ausforming treatments. To do so, the microstructural characterization in different regions of barreled samples has been combined with the simulation of the stress and strain state at the macro and micro level, by finite elements simulations and crystal plasticity simulations, respectively. The main conclusion is that the variant selection shown in these microstructures can be explained by understanding the distribution of the plastic strains at the macro and micro level. The selection of crystallographic variants is more pronounced in the regions which have been more deformed. Also, the deformation distributes along deformation microbands, where the most promoted variants seem to grow, in good agreement with previous results in ausformed lath martensite.
ISSN:2238-7854