Gravitational memory effects and higher derivative actions

Abstract We show that charges associated with the internal Lorentz symmetries of general relativity, with higher derivative boundary terms included in the action, capture observable gravitational wave effects. In particular, the Gauss-Bonnet charge measures the precession rate of a freely-falling gy...

Full description

Bibliographic Details
Main Authors: Mahdi Godazgar, George Long, Ali Seraj
Format: Article
Language:English
Published: SpringerOpen 2022-09-01
Series:Journal of High Energy Physics
Subjects:
Online Access:https://doi.org/10.1007/JHEP09(2022)150
Description
Summary:Abstract We show that charges associated with the internal Lorentz symmetries of general relativity, with higher derivative boundary terms included in the action, capture observable gravitational wave effects. In particular, the Gauss-Bonnet charge measures the precession rate of a freely-falling gyroscope, while the Pontryagin charge encodes the relative radial acceleration of freely-falling test masses. This relation highlights the importance of the tetrad formalism and the physical significance of asymptotic internal Lorentz symmetries.
ISSN:1029-8479