A Review of the Classical Canonical Ensemble Treatment of Newton’s Gravitation
It is common lore that the canonical gravitational partition function <inline-formula> <math display="inline"> <semantics> <mi mathvariant="script">Z</mi> </semantics> </math> </inline-formula> associated with the classical Boltzman...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2019-07-01
|
Series: | Entropy |
Subjects: | |
Online Access: | https://www.mdpi.com/1099-4300/21/7/677 |
Summary: | It is common lore that the canonical gravitational partition function <inline-formula> <math display="inline"> <semantics> <mi mathvariant="script">Z</mi> </semantics> </math> </inline-formula> associated with the classical Boltzmann-Gibbs (BG) exponential distribution cannot be built up because of mathematical pitfalls. The integral needed for writing up <inline-formula> <math display="inline"> <semantics> <mi mathvariant="script">Z</mi> </semantics> </math> </inline-formula> diverges. We review here how to avoid this pitfall and obtain a (classical) statistical mechanics of Newton’s gravitation. This is done using (1) the analytical extension treatment obtained of Gradshteyn and Rizhik and (2) the well known dimensional regularization technique. |
---|---|
ISSN: | 1099-4300 |