Adaptive Backward/Forward Sweep for Solving Power Flow of Islanded Microgrids

This paper presents an algorithm for solving the power flow (PF) problem of droop-regulated AC microgrids (DRACMs) operating in isolated mode. These systems are based on radial distribution networks without having a slack bus to facilitate conventional computations. Moreover, distributed generation...

Full description

Bibliographic Details
Main Authors: Abhimanyu Kumar, Abhishek Kumar, Rammohan Mallipeddi, Dong-Gyu Lee
Format: Article
Language:English
Published: MDPI AG 2022-12-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/15/24/9348
Description
Summary:This paper presents an algorithm for solving the power flow (PF) problem of droop-regulated AC microgrids (DRACMs) operating in isolated mode. These systems are based on radial distribution networks without having a slack bus to facilitate conventional computations. Moreover, distributed generation units have to distribute the power and voltage regulation among themselves as a function of operating frequency and voltage droop rather than having a slack bus that regulates voltage and power demands. Based on the conventional backward/forward sweep algorithm (BFS), the proposed method is a derivative-free PF algorithm. To manage the absence of a slack bus in the system, the BFS algorithm introduces new loops, equations, and self-adaptation procedures to its computation procedures. A comparison is presented between the proposed BFS algorithm and other state-of-the-art PF algorithms, as well as PSCAD/EMTDC. In comparison to existing algorithms, the proposed approach is fast, simple, accurate, and easy to implement, and it can be considered an effective tool for planning and analyzing islanded DRACMs.
ISSN:1996-1073