A Machine-Learning Strategy to Detect Mura Defects in a Low-Contrast Image by Piecewise Gamma Correction

A detection and classification machine-learning model to inspect Thin Film Transistor Liquid Crystal Display (TFT-LCD) Mura is proposed in this study. To improve the capability of the machine-learning model to inspect panels’ low-contrast grayscale images, piecewise gamma correction and a Selective...

Бүрэн тодорхойлолт

Номзүйн дэлгэрэнгүй
Үндсэн зохиолчид: Zo-Han Lin, Qi-Yuan Lai, Hung-Yuan Li
Формат: Өгүүллэг
Хэл сонгох:English
Хэвлэсэн: MDPI AG 2024-02-01
Цуврал:Sensors
Нөхцлүүд:
Онлайн хандалт:https://www.mdpi.com/1424-8220/24/5/1484
Тодорхойлолт
Тойм:A detection and classification machine-learning model to inspect Thin Film Transistor Liquid Crystal Display (TFT-LCD) Mura is proposed in this study. To improve the capability of the machine-learning model to inspect panels’ low-contrast grayscale images, piecewise gamma correction and a Selective Search algorithm are applied to detect and optimize the feature regions based on the Semiconductor Equipment and Materials International Mura (SEMU) specifications. In this process, matching the segment proportions to gamma values of piecewise gamma is a task that involves derivative-free optimization which is trained by adaptive particle swarm optimization. The detection accuracy rate (DAR) is approximately 93.75%. An enhanced convolutional neural network model is then applied to classify the Mura type through using the Taguchi experimental design method that identifies the optimal combination of the convolution kernel and the maximum pooling kernel sizes. A remarkable defect classification accuracy rate (CAR) of approximately 96.67% is ultimately achieved. The entire defect detection and classification process can be completed in about 3 milliseconds.
ISSN:1424-8220