Glucose Metabolism in Burns—What Happens?
Severe burns represent an important challenge for patients and medical teams. They lead to profound metabolic alterations, trigger a systemic inflammatory response, crush the immune defense, impair the function of the heart, lungs, kidneys, liver, etc. The metabolism is shifted towards a hypermetabo...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-05-01
|
Series: | International Journal of Molecular Sciences |
Subjects: | |
Online Access: | https://www.mdpi.com/1422-0067/22/10/5159 |
Summary: | Severe burns represent an important challenge for patients and medical teams. They lead to profound metabolic alterations, trigger a systemic inflammatory response, crush the immune defense, impair the function of the heart, lungs, kidneys, liver, etc. The metabolism is shifted towards a hypermetabolic state, and this situation might persist for years after the burn, having deleterious consequences for the patient’s health. Severely burned patients lack energy substrates and react in order to produce and maintain augmented levels of glucose, which is the fuel “ready to use” by cells. In this paper, we discuss biological substances that induce a hyperglycemic response, concur to insulin resistance, and determine cell disturbance after a severe burn. We also focus on the most effective agents that provide pharmacological modulations of the changes in glucose metabolism. |
---|---|
ISSN: | 1661-6596 1422-0067 |