Long-Term Sheep Implantation of WIMAGINE®, a Wireless 64-Channel Electrocorticogram Recorder

This article deals with the long-term preclinical validation of WIMAGINE® (Wireless Implantable Multi-channel Acquisition system for Generic Interface with Neurons), a 64-channel wireless implantable recorder that measures the electrical activity at the cortical surface (electrocorticography, ECoG)....

Full description

Bibliographic Details
Main Authors: F. Sauter-Starace, D. Ratel, C. Cretallaz, M. Foerster, A. Lambert, C. Gaude, T. Costecalde, S. Bonnet, G. Charvet, T. Aksenova, C. Mestais, Alim-Louis Benabid, N. Torres-Martinez
Format: Article
Language:English
Published: Frontiers Media S.A. 2019-08-01
Series:Frontiers in Neuroscience
Subjects:
Online Access:https://www.frontiersin.org/article/10.3389/fnins.2019.00847/full
_version_ 1818199899140784128
author F. Sauter-Starace
D. Ratel
C. Cretallaz
M. Foerster
A. Lambert
C. Gaude
T. Costecalde
S. Bonnet
G. Charvet
T. Aksenova
C. Mestais
Alim-Louis Benabid
N. Torres-Martinez
author_facet F. Sauter-Starace
D. Ratel
C. Cretallaz
M. Foerster
A. Lambert
C. Gaude
T. Costecalde
S. Bonnet
G. Charvet
T. Aksenova
C. Mestais
Alim-Louis Benabid
N. Torres-Martinez
author_sort F. Sauter-Starace
collection DOAJ
description This article deals with the long-term preclinical validation of WIMAGINE® (Wireless Implantable Multi-channel Acquisition system for Generic Interface with Neurons), a 64-channel wireless implantable recorder that measures the electrical activity at the cortical surface (electrocorticography, ECoG). The WIMAGINE® implant was designed for chronic wireless neuronal signal acquisition, to be used e.g., as an intracranial Brain–Computer Interface (BCI) for severely motor-impaired patients. Due to the size and shape of WIMAGINE®, sheep appeared to be the best animal model on which to carry out long-term in vivo validation. The devices were implanted in two sheep for a follow-up period of 10 months, including idle state cortical recordings and Somato-Sensory Evoked Potential (SSEP) sessions. ECoG and SSEP demonstrated relatively stable behavior during the 10-month observation period. Information recorded from the SensoriMotor Cortex (SMC) showed an SSEP phase reversal, indicating the cortical site of the sensorimotor activity was retained after 10 months of contact. Based on weekly recordings of raw ECoG signals, the effective bandwidth was in the range of 230 Hz for both animals and remarkably stable over time, meaning preservation of the high frequency bands valuable for decoding of the brain activity using BCIs. The power spectral density (in dB/Hz), on a log scale, was of the order of 2.2, –4.5 and –18 for the frequency bands (10–40), (40–100), and (100–200) Hz, respectively. The outcome of this preclinical work is the first long-term in vivo validation of the WIMAGINE® implant, highlighting its ability to record the brain electrical activity through the dura mater and to send wireless digitized data to the external base station. Apart from local adhesion of the dura to the skull, the neurosurgeon did not face any difficulty in the implantation of the WIMAGINE® device and post-mortem analysis of the brain revealed no side effect related to the implantation. We also report on the reliability of the system; including the implantable device, the antennas module and the external base station.
first_indexed 2024-12-12T02:29:05Z
format Article
id doaj.art-a4cb1020f65341c8b0eda52338a9646b
institution Directory Open Access Journal
issn 1662-453X
language English
last_indexed 2024-12-12T02:29:05Z
publishDate 2019-08-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Neuroscience
spelling doaj.art-a4cb1020f65341c8b0eda52338a9646b2022-12-22T00:41:28ZengFrontiers Media S.A.Frontiers in Neuroscience1662-453X2019-08-011310.3389/fnins.2019.00847451890Long-Term Sheep Implantation of WIMAGINE®, a Wireless 64-Channel Electrocorticogram RecorderF. Sauter-Starace0D. Ratel1C. Cretallaz2M. Foerster3A. Lambert4C. Gaude5T. Costecalde6S. Bonnet7G. Charvet8T. Aksenova9C. Mestais10Alim-Louis Benabid11N. Torres-Martinez12Univ. Grenoble Alpes, CEA, Leti, CLINATEC, Grenoble, FranceUniv. Grenoble Alpes, CEA, Leti, CLINATEC, Grenoble, FranceUniv. Grenoble Alpes, CEA, Leti, CLINATEC, Grenoble, FranceUniv. Grenoble Alpes, CEA, Leti, CLINATEC, Grenoble, FranceUniv. Grenoble Alpes, CEA, Leti, CLINATEC, Grenoble, FranceUniv. Grenoble Alpes, CEA, Leti, CLINATEC, Grenoble, FranceUniv. Grenoble Alpes, CEA, Leti, CLINATEC, Grenoble, FranceUniv. Grenoble Alpes, CEA, Leti, DTBS, Grenoble, FranceUniv. Grenoble Alpes, CEA, Leti, CLINATEC, Grenoble, FranceUniv. Grenoble Alpes, CEA, Leti, CLINATEC, Grenoble, FranceUniv. Grenoble Alpes, CEA, Leti, CLINATEC, Grenoble, FranceUniv. Grenoble Alpes, CEA, Leti, CLINATEC, Grenoble, FranceUniv. Grenoble Alpes, CEA, Leti, CLINATEC, Grenoble, FranceThis article deals with the long-term preclinical validation of WIMAGINE® (Wireless Implantable Multi-channel Acquisition system for Generic Interface with Neurons), a 64-channel wireless implantable recorder that measures the electrical activity at the cortical surface (electrocorticography, ECoG). The WIMAGINE® implant was designed for chronic wireless neuronal signal acquisition, to be used e.g., as an intracranial Brain–Computer Interface (BCI) for severely motor-impaired patients. Due to the size and shape of WIMAGINE®, sheep appeared to be the best animal model on which to carry out long-term in vivo validation. The devices were implanted in two sheep for a follow-up period of 10 months, including idle state cortical recordings and Somato-Sensory Evoked Potential (SSEP) sessions. ECoG and SSEP demonstrated relatively stable behavior during the 10-month observation period. Information recorded from the SensoriMotor Cortex (SMC) showed an SSEP phase reversal, indicating the cortical site of the sensorimotor activity was retained after 10 months of contact. Based on weekly recordings of raw ECoG signals, the effective bandwidth was in the range of 230 Hz for both animals and remarkably stable over time, meaning preservation of the high frequency bands valuable for decoding of the brain activity using BCIs. The power spectral density (in dB/Hz), on a log scale, was of the order of 2.2, –4.5 and –18 for the frequency bands (10–40), (40–100), and (100–200) Hz, respectively. The outcome of this preclinical work is the first long-term in vivo validation of the WIMAGINE® implant, highlighting its ability to record the brain electrical activity through the dura mater and to send wireless digitized data to the external base station. Apart from local adhesion of the dura to the skull, the neurosurgeon did not face any difficulty in the implantation of the WIMAGINE® device and post-mortem analysis of the brain revealed no side effect related to the implantation. We also report on the reliability of the system; including the implantable device, the antennas module and the external base station.https://www.frontiersin.org/article/10.3389/fnins.2019.00847/fulllong-term implantationwireless communicationsbrain–computer interfaceelectrocorticogram (ECoG)signal qualitylocal tolerance
spellingShingle F. Sauter-Starace
D. Ratel
C. Cretallaz
M. Foerster
A. Lambert
C. Gaude
T. Costecalde
S. Bonnet
G. Charvet
T. Aksenova
C. Mestais
Alim-Louis Benabid
N. Torres-Martinez
Long-Term Sheep Implantation of WIMAGINE®, a Wireless 64-Channel Electrocorticogram Recorder
Frontiers in Neuroscience
long-term implantation
wireless communications
brain–computer interface
electrocorticogram (ECoG)
signal quality
local tolerance
title Long-Term Sheep Implantation of WIMAGINE®, a Wireless 64-Channel Electrocorticogram Recorder
title_full Long-Term Sheep Implantation of WIMAGINE®, a Wireless 64-Channel Electrocorticogram Recorder
title_fullStr Long-Term Sheep Implantation of WIMAGINE®, a Wireless 64-Channel Electrocorticogram Recorder
title_full_unstemmed Long-Term Sheep Implantation of WIMAGINE®, a Wireless 64-Channel Electrocorticogram Recorder
title_short Long-Term Sheep Implantation of WIMAGINE®, a Wireless 64-Channel Electrocorticogram Recorder
title_sort long term sheep implantation of wimagine r a wireless 64 channel electrocorticogram recorder
topic long-term implantation
wireless communications
brain–computer interface
electrocorticogram (ECoG)
signal quality
local tolerance
url https://www.frontiersin.org/article/10.3389/fnins.2019.00847/full
work_keys_str_mv AT fsauterstarace longtermsheepimplantationofwimagineawireless64channelelectrocorticogramrecorder
AT dratel longtermsheepimplantationofwimagineawireless64channelelectrocorticogramrecorder
AT ccretallaz longtermsheepimplantationofwimagineawireless64channelelectrocorticogramrecorder
AT mfoerster longtermsheepimplantationofwimagineawireless64channelelectrocorticogramrecorder
AT alambert longtermsheepimplantationofwimagineawireless64channelelectrocorticogramrecorder
AT cgaude longtermsheepimplantationofwimagineawireless64channelelectrocorticogramrecorder
AT tcostecalde longtermsheepimplantationofwimagineawireless64channelelectrocorticogramrecorder
AT sbonnet longtermsheepimplantationofwimagineawireless64channelelectrocorticogramrecorder
AT gcharvet longtermsheepimplantationofwimagineawireless64channelelectrocorticogramrecorder
AT taksenova longtermsheepimplantationofwimagineawireless64channelelectrocorticogramrecorder
AT cmestais longtermsheepimplantationofwimagineawireless64channelelectrocorticogramrecorder
AT alimlouisbenabid longtermsheepimplantationofwimagineawireless64channelelectrocorticogramrecorder
AT ntorresmartinez longtermsheepimplantationofwimagineawireless64channelelectrocorticogramrecorder