Electron-induced nonlinear dynamics in atomic chains
We study the nonlinear response of collective optical resonances in linear atomic chains with metallic, semiconducting, and topologically insulating character to low-energy free electrons. The nonlinearity, which manifests in the amplitude and frequency of resonant features in cathodoluminescence an...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
American Physical Society
2023-04-01
|
Series: | Physical Review Research |
Online Access: | http://doi.org/10.1103/PhysRevResearch.5.L022015 |
Summary: | We study the nonlinear response of collective optical resonances in linear atomic chains with metallic, semiconducting, and topologically insulating character to low-energy free electrons. The nonlinearity, which manifests in the amplitude and frequency of resonant features in cathodoluminescence and electron energy-loss spectra, is shown to depend on the speed and trajectory of the excitation as well as the length and electronic structure of the chain. Time-domain analysis of charge carrier dynamics within the atomic chain reveals that the Fermi velocity sets the threshold speed for triggering an electron-induced nonlinear response, a phenomenon which can elucidate nonlinear light-matter interactions on the nanoscale. |
---|---|
ISSN: | 2643-1564 |