The Application of Improved Bacteria Foraging Algorithm to the Optimization of Aviation Equipment Maintenance Scheduling

Taking the aviation equipment scheduled maintenance as a prototype, this paper improves a bionic global random search algorithm - bacteria foraging optimization algorithm to solve the task-scheduling problem. Inspired by gene mutation, the activity of bacteria is dynamically adjusted to make good ba...

Full description

Bibliographic Details
Main Author: Jia Cui
Format: Article
Language:English
Published: Faculty of Mechanical Engineering in Slavonski Brod, Faculty of Electrical Engineering in Osijek, Faculty of Civil Engineering in Osijek 2018-01-01
Series:Tehnički Vjesnik
Subjects:
Online Access:https://hrcak.srce.hr/file/300937
Description
Summary:Taking the aviation equipment scheduled maintenance as a prototype, this paper improves a bionic global random search algorithm - bacteria foraging optimization algorithm to solve the task-scheduling problem. Inspired by gene mutation, the activity of bacteria is dynamically adjusted to make good bacteria more capable of action. In addition, a bacterial quorum sensing mechanism is established, which allows bacteria to guide their swimming routes by using their peer experience and enhance their global search capability. Its application to the engineering practice can optimize the scheduling of the maintenance process. It is of great application value in increasing the aviation equipment maintenance efficiency and the level of command automation. In addition, it can improve the resource utilization ratio to reduce the maintenance support cost.
ISSN:1330-3651
1848-6339