Influence of Solid Solution and Aging Treatment Conditions on the Formation of Ultrafine-Grained Structure of CuCr0.6 Alloy Processed by Compression with Oscillatory Torsion
The samples of the CuCr0.6 alloy in the solution treated and additionally in aging states were severely plastically deformed by compression with oscillatory torsion (COT) method to produce ultrafine – grained structure. The samples were processed by using process parameters as: frequency of torsion...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Polish Academy of Sciences
2018-12-01
|
Series: | Archives of Metallurgy and Materials |
Subjects: | |
Online Access: | https://journals.pan.pl/Content/109184/PDF/AMM-2018-4-65-Urbanczyk.pdf |
_version_ | 1811313315032334336 |
---|---|
author | A. Urbańczyk-Gucwa A. Brzezińska K. Rodak |
author_facet | A. Urbańczyk-Gucwa A. Brzezińska K. Rodak |
author_sort | A. Urbańczyk-Gucwa |
collection | DOAJ |
description | The samples of the CuCr0.6 alloy in the solution treated and additionally in aging states were severely plastically deformed by compression with oscillatory torsion (COT) method to produce ultrafine – grained structure. The samples were processed by using process parameters as: frequency of torsion (f = 1.6 Hz), compression speed (v = 0.04 mm/s), angle torsion (α = ±6°), height reduction (Δh = 7 mm). The total effective strain was εft = 40. The microstructure has been analyzed by scanning transmission electron microscope (STEM) Hitachi HD-2300A equipped with a cold field emission gun at an accelerating voltage of 200 kV. The quantitative microstructure investigations as disorientation angles were performed using a FEI INSPECT F scanning electron microscope (SEM) equipped with a cold field emission gun and a electron backscattering diffraction (EBSD) detector. The mechanical properties were determined using MST QTest/10 machine equipped with digital image correlation (DIC). The COT processed alloy previously aged at 500°C per 2h shows high mechanical strength, ultimate tensile strength UTS: 521 MPa and yield tensile strength YS: 488 MP attributed to the high density of coherent precipitates and ultrafine grained structure. |
first_indexed | 2024-04-13T10:51:27Z |
format | Article |
id | doaj.art-a50ff2dfab7746c7a6b5e29450696c46 |
institution | Directory Open Access Journal |
issn | 2300-1909 |
language | English |
last_indexed | 2024-04-13T10:51:27Z |
publishDate | 2018-12-01 |
publisher | Polish Academy of Sciences |
record_format | Article |
series | Archives of Metallurgy and Materials |
spelling | doaj.art-a50ff2dfab7746c7a6b5e29450696c462022-12-22T02:49:38ZengPolish Academy of SciencesArchives of Metallurgy and Materials2300-19092018-12-01vol. 63No 420612066https://doi.org/10.24425/amm.2018.125143Influence of Solid Solution and Aging Treatment Conditions on the Formation of Ultrafine-Grained Structure of CuCr0.6 Alloy Processed by Compression with Oscillatory TorsionA. Urbańczyk-GucwaA. BrzezińskaK. RodakThe samples of the CuCr0.6 alloy in the solution treated and additionally in aging states were severely plastically deformed by compression with oscillatory torsion (COT) method to produce ultrafine – grained structure. The samples were processed by using process parameters as: frequency of torsion (f = 1.6 Hz), compression speed (v = 0.04 mm/s), angle torsion (α = ±6°), height reduction (Δh = 7 mm). The total effective strain was εft = 40. The microstructure has been analyzed by scanning transmission electron microscope (STEM) Hitachi HD-2300A equipped with a cold field emission gun at an accelerating voltage of 200 kV. The quantitative microstructure investigations as disorientation angles were performed using a FEI INSPECT F scanning electron microscope (SEM) equipped with a cold field emission gun and a electron backscattering diffraction (EBSD) detector. The mechanical properties were determined using MST QTest/10 machine equipped with digital image correlation (DIC). The COT processed alloy previously aged at 500°C per 2h shows high mechanical strength, ultimate tensile strength UTS: 521 MPa and yield tensile strength YS: 488 MP attributed to the high density of coherent precipitates and ultrafine grained structure.https://journals.pan.pl/Content/109184/PDF/AMM-2018-4-65-Urbanczyk.pdfcucr0.6 alloysevere plastic deformationultrafine-grainsstem |
spellingShingle | A. Urbańczyk-Gucwa A. Brzezińska K. Rodak Influence of Solid Solution and Aging Treatment Conditions on the Formation of Ultrafine-Grained Structure of CuCr0.6 Alloy Processed by Compression with Oscillatory Torsion Archives of Metallurgy and Materials cucr0.6 alloy severe plastic deformation ultrafine-grains stem |
title | Influence of Solid Solution and Aging Treatment Conditions on the Formation of Ultrafine-Grained Structure of CuCr0.6 Alloy Processed by Compression with Oscillatory Torsion |
title_full | Influence of Solid Solution and Aging Treatment Conditions on the Formation of Ultrafine-Grained Structure of CuCr0.6 Alloy Processed by Compression with Oscillatory Torsion |
title_fullStr | Influence of Solid Solution and Aging Treatment Conditions on the Formation of Ultrafine-Grained Structure of CuCr0.6 Alloy Processed by Compression with Oscillatory Torsion |
title_full_unstemmed | Influence of Solid Solution and Aging Treatment Conditions on the Formation of Ultrafine-Grained Structure of CuCr0.6 Alloy Processed by Compression with Oscillatory Torsion |
title_short | Influence of Solid Solution and Aging Treatment Conditions on the Formation of Ultrafine-Grained Structure of CuCr0.6 Alloy Processed by Compression with Oscillatory Torsion |
title_sort | influence of solid solution and aging treatment conditions on the formation of ultrafine grained structure of cucr0 6 alloy processed by compression with oscillatory torsion |
topic | cucr0.6 alloy severe plastic deformation ultrafine-grains stem |
url | https://journals.pan.pl/Content/109184/PDF/AMM-2018-4-65-Urbanczyk.pdf |
work_keys_str_mv | AT aurbanczykgucwa influenceofsolidsolutionandagingtreatmentconditionsontheformationofultrafinegrainedstructureofcucr06alloyprocessedbycompressionwithoscillatorytorsion AT abrzezinska influenceofsolidsolutionandagingtreatmentconditionsontheformationofultrafinegrainedstructureofcucr06alloyprocessedbycompressionwithoscillatorytorsion AT krodak influenceofsolidsolutionandagingtreatmentconditionsontheformationofultrafinegrainedstructureofcucr06alloyprocessedbycompressionwithoscillatorytorsion |