Waveform Design for Improved Detection of Extended Targets in Sea Clutter

Adaptive waveform design for cognitive radar in the case of extended target detection under compound-Gaussian (CG) sea clutter is addressed. Based on the CG characteristics of sea clutter, the texture component is employed to characterize the clutter ensemble during each closed-loop feedback and its...

Full description

Bibliographic Details
Main Authors: Linke Zhang, Na Wei, Xuhao Du
Format: Article
Language:English
Published: MDPI AG 2019-09-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/19/18/3957
Description
Summary:Adaptive waveform design for cognitive radar in the case of extended target detection under compound-Gaussian (CG) sea clutter is addressed. Based on the CG characteristics of sea clutter, the texture component is employed to characterize the clutter ensemble during each closed-loop feedback and its estimation can be used for the next transmitted waveform design. The resulting waveform design problem is formulated according to the following optimization criterion: maximization of the output signal-to-interference-plus-noise ratio (SINR) for sea clutter suppression, and imposing a further constraint on sidelobes level of the waveform autocorrelation outputs for decreasing the false alarm rate. Numerical results demonstrate the effectiveness of this approach.
ISSN:1424-8220