Design and Simulation of Microbolometer with Dual Cavity for High Figure of Merits

The rapid expansion of the applications of infrared (IR) sensing in the commercial market has driven the need to develop new materials and detector designs for enhanced performance. In this work, we describe the design of a microbolometer that uses two cavities to suspend two layers (sensing and abs...

Full description

Bibliographic Details
Main Authors: Kevin O. Díaz Aponte, Yanan Xu, Mukti Rana
Format: Article
Language:English
Published: MDPI AG 2023-04-01
Series:Micromachines
Subjects:
Online Access:https://www.mdpi.com/2072-666X/14/5/948
Description
Summary:The rapid expansion of the applications of infrared (IR) sensing in the commercial market has driven the need to develop new materials and detector designs for enhanced performance. In this work, we describe the design of a microbolometer that uses two cavities to suspend two layers (sensing and absorber). Here, we implemented the finite element method (FEM) from COMSOL Multiphysics to design the microbolometer. We varied the layout, thickness, and dimensions (width and length) of different layers one at a time to study the heat transfer effect for obtaining the maximum figure of merit. This work reports the design, simulation, and performance analysis of the figure of merit of a microbolometer that uses Ge<sub>x</sub>Si<sub>y</sub>Sn<sub>z</sub>O<sub>r</sub> thin films as the sensing layer. From our design, we obtained an effective thermal conductance of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1.0135</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>7</mn></mrow></msup><mo> </mo><mi mathvariant="normal">W</mi><mo>/</mo><mi mathvariant="normal">K</mi></mrow></semantics></math></inline-formula>, a time constant of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>11</mn><mo> </mo><mi mathvariant="normal">m</mi><mi mathvariant="normal">s</mi></mrow></semantics></math></inline-formula>, responsivity of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>5.040</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>5</mn></mrow></msup><mo> </mo><mi mathvariant="normal">V</mi><mo>/</mo><mi mathvariant="normal">W</mi></mrow></semantics></math></inline-formula>, and detectivity of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>9.357</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>7</mn></mrow></msup><mo> </mo><mrow><mrow><mi mathvariant="normal">c</mi><mi mathvariant="normal">m</mi><mo>−</mo><mi mathvariant="normal">H</mi><msup><mrow><mi mathvariant="normal">z</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></mrow><mo>/</mo><mrow><mi mathvariant="normal">W</mi></mrow></mrow></mrow></semantics></math></inline-formula> considering a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2</mn><mo> </mo><mi mathvariant="sans-serif">μ</mi><mi mathvariant="normal">A</mi></mrow></semantics></math></inline-formula> bias current.
ISSN:2072-666X